
Part 2. MySQL Developer II Exam

Table of Contents
12. Joins .. 3
13. Subqueries .. 24
14. Views .. 36
15. Importing and Exporting Data .. 41
16. User Variables ... 48
17. Prepared Statements ... 50
18. Stored Procedures and Functions ... 54
19. Triggers ... 60
20. Obtaining Database Metadata ... 61
21. Debugging MySQL Applications .. 66
22. Basic Optimizations .. 69

2

Chapter 12. Joins
Almost all examples and exercises in this study guide use the world database as the sample data set. The
accompanying CD-ROM contains the data for this database and instructions that describe how to create
and populate the database for use with your own MySQL installation.

Question 1:

What kind of join can find matches (values that are present in both tables involved in the join)?

Question 2:

What kind of join or joins find mismatches (values that are present in only one of the tables involved in
the join)?

Question 3:

Write an inner join using the comma operator that retrieves the names of countries and the names of lan-
guages that are the official languages in that country.

Question 4:

Write an inner join using INNER JOIN that retrieves the names of countries and the names of lan-
guages that are the official languages in that country. Can you use either the ON clause or the USING
clause?

Question 5:

Write an inner join that displays country names, city names, and city population of all countries that are
not independent (where the IndepYear column is NULL).

Question 6:

Write an inner join that shows the city population as a total per country, for countries that are not inde-
pendent (where the IndepYear column is NULL).

Question 7:

What do you call a join that combines all rows in one table with all rows in another table? What's the
syntax for joining the City and the Country table that way? Why would you typically want to avoid
such joins, and how can you accomplish that?

Question 8:

When querying two tables with an outer join, is it always possible to rewrite a LEFT JOIN as a RIGHT
JOIN, or are there exceptions? If there aren't any exceptions, what is it good for to have two kinds of
outer joins?

Question 9:

In which cases is it necessary to qualify column names with the appropriate table name, and why would
you want to qualify column names with table names even if that's not necessary?

Question 10:

In which cases do you have to qualify table names with database names?

Question 11:

3

In which case is it impossible to resolve name conflicts by qualifying column names with the appropri-
ate table names, or table names with the appropriate database names? How would such a conflict be re-
solved? Give an example.

Question 12:

Which of the following statements are true?

1. Joins are restricted to SELECT statements.

2. Joins work for INSERT, UPDATE, and DELETE statements.

3. Joins work for SELECT, UPDATE, and DELETE statements.

4. Joins work for UPDATE statements, but it's not possible to change data in more than one table with-
in a single join.

5. Joins work for DELETE statements, but it's not possible to delete data in more than one table within
a single join.

Question 13:

Consider the following record from the Country table:

mysql> SELECT
-> Name, Region, Continent, SurfaceArea, Population
-> FROM Country
-> WHERE Name = 'Paraguay'
-> ;

+----------+---------------+---------------+-------------+------------+
| Name | Region | Continent | SurfaceArea | Population |
+----------+---------------+---------------+-------------+------------+
| Paraguay | South America | South America | 406752.00 | 5496000 |
+----------+---------------+---------------+-------------+------------+

What statement would you issue to retrieve a list of countries whose surface area is larger than that of
Paraguay, when you consider countries on the same continent (South America) only? The column head-
ings of the result should look like this:

+----------+-----------------+---------------+--------------+
| Country | Other Countries | Continent | Surface Area |
+----------+-----------------+---------------+--------------+

Question 14:

Consider the following record from the Country table:

mysql> SELECT
-> Name, Region, Continent, SurfaceArea, Population
-> FROM Country
-> WHERE Name = 'Germany'
-> ;

+---------+----------------+-----------+-------------+------------+
| Name | Region | Continent | SurfaceArea | Population |
+---------+----------------+-----------+-------------+------------+
| Germany | Western Europe | Europe | 357022.00 | 82164700 |
+---------+----------------+-----------+-------------+------------+

Joins

4

What statement would you issue to retrieve a list of the countries worldwide with a population at least as
large as that of Germany? Germany should be included in the list, which should be sorted by descending
population. The column headings of the result should look like this:

+---------+--------------------+------------+
| Country | Other Countries | Population |
+---------+--------------------+------------+

Question 15:

Consider the following record from the Country table:

mysql> SELECT
-> Name, Region, Continent, SurfaceArea, Population
-> FROM Country
-> WHERE Name = 'Nepal'
-> ;

+-------+---------------------------+-----------+-------------+------------+
| Name | Region | Continent | SurfaceArea | Population |
+-------+---------------------------+-----------+-------------+------------+
| Nepal | Southern and Central Asia | Asia | 147181.00 | 23930000 |
+-------+---------------------------+-----------+-------------+------------+

What statement would you issue to retrieve a list of countries in the same region with a population and
surface area at least as large as that of Nepal? Nepal should be included in the list, which should be sor-
ted by descending population. The column headings of the result should look like this, with all region
names cut to a maximum length of 10 characters:

+---------+-----------------+----------------+------------+------------+
| Country | Other Countries | Region | Population | Surface |
+---------+-----------------+----------------+------------+------------+

Question 16:

Here's the structure and contents for two tables, client and project, which will be used for the next
two questions.

mysql> DESCRIBE client;
+-------+----------------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------+----------------------+------+-----+---------+-------+
| cid | smallint(5) unsigned | NO | PRI | 0 | |
| name | char(20) | NO | | | |
+-------+----------------------+------+-----+---------+-------+
mysql> DESCRIBE project;
+-------+----------------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------+----------------------+------+-----+---------+-------+
pid	int(10) unsigned	NO	PRI	0	
cid	smallint(5) unsigned	NO		0	
name	char(30)	NO			
start	date	YES		NULL	
end	date	YES		NULL	
+-------+----------------------+------+-----+---------+-------+					
mysql> SELECT * FROM client;					
+-----+---------------+					
cid	name				
+-----+---------------+

Joins

5

101	Seamen's
103	Lennart AG
110	MySQL AB
115	Icoaten & Co.
125	Nittboad Inc
+-----+---------------+	
mysql> SELECT * FROM project;	
+-------+-----+-------------+------------+------------+	
pid	cid
+-------+-----+-------------+------------+------------+	
10000	103
10010	110
10020	110
10030	115
10040	103
10050	101
10060	115
10070	115
+-------+-----+-------------+------------+------------+

How many rows will the following join statements return?

mysql> SELECT client.name, project.name, project.start, project.end
-> FROM client, project
-> ;

mysql> SELECT client.name, project.name, project.start, project.end
-> FROM client, project
-> WHERE project.cid = client.cid
-> ;

Question 17:

Refer to the client and project tables shown in the previous question. How many rows will the
following join statements return?

mysql> SELECT client.name, project.name, project.start, project.end
-> FROM client, project
-> WHERE project.cid = client.cid
-> AND project.start IS NOT NULL
-> ;

mysql> SELECT client.name, project.name, project.start, project.end
-> FROM client, project
-> WHERE project.cid = client.cid
-> AND project.start IS NOT NULL
-> AND project.end IS NOT NULL
-> ;

Question 18:

Here's the structure and sample data for two tables, client and project, which will be used for the
next three questions.

mysql> DESCRIBE client;
+-------+----------------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------+----------------------+------+-----+---------+-------+
| cid | smallint(5) unsigned | NO | PRI | 0 | |
| name | char(20) | NO | | | |

Joins

6

+-------+----------------------+------+-----+---------+-------+
mysql> DESCRIBE project;
+-------+----------------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------+----------------------+------+-----+---------+-------+
pid	int(10) unsigned	NO	PRI	0	
cid	smallint(5) unsigned	NO		0	
name	char(30)	NO			
start	date	YES		NULL	
end	date	YES		NULL	
+-------+----------------------+------+-----+---------+-------+					
mysql> SELECT * FROM client;					
+-----+---------------+					
cid	name				
+-----+---------------+					
101	Seamen's				
103	Lennart AG				
110	MySQL AB				
115	Icoaten & Co.				
125	Nittboad Inc				
+-----+---------------+					
mysql> SELECT * FROM project;					
+-------+-----+-------------+------------+------------+					
pid	cid	name	start	end	
+-------+-----+-------------+------------+------------+					
10000	103	New CMS	2003-01-00	2003-05-00	
10010	110	Texi2XML	2002-04-00	2003-09-00	
10020	110	Studyguides	2002-09-00	2003-03-30	
10030	115	PDC Server	2003-01-00	2003-01-00	
10040	103	Intranet	2009-02-00	NULL	
10050	101	Intranet	NULL	NULL	
10060	115	SMB Server	2003-05-00	NULL	
10070	115	WLAN	NULL	2003-07-00	
+-------+-----+-------------+------------+------------+

Using the client and project tables, you want to retrieve a list of clients that have no projects for a
report with these column headings:

+----------+---------+-------+------+
| CLIENT | PROJECT | START | END |
+----------+---------+-------+------+

What SQL statement will you issue?

Question 19:

Refer to the structure and sample data for the client and project tables, shown in the previous
question. Using these two tables, you want to retrieve a list of clients that have projects starting in the
year 2003, sorted by start date, for a report with these column headings:

+----------+---------+-------+------+
| CLIENT | PROJECT | START | END |
+----------+---------+-------+------+

What SQL statement will you issue?

Question 20:

Refer to the structure and sample data for the client and project tables, shown two questions earli-
er. Using these two tables, you want to retrieve a list of clients that have intranet projects, using the
LEFT JOIN syntax, for a report with these column headings:

Joins

7

+----------+---------+-------+------+
| CLIENT | PROJECT | START | END |
+----------+---------+-------+------+

What SQL statement will you issue?

Question 21:

Here's the structure and sample data for two tables, client and project, which will be used for the
next three questions.

mysql> DESCRIBE client;
+-------+----------------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------+----------------------+------+-----+---------+-------+
| cid | smallint(5) unsigned | NO | PRI | 0 | |
| name | char(20) | NO | | | |
+-------+----------------------+------+-----+---------+-------+
mysql> DESCRIBE project;
+-------+----------------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------+----------------------+------+-----+---------+-------+
pid	int(10) unsigned	NO	PRI	0	
cid	smallint(5) unsigned	NO		0	
name	char(30)	NO			
start	date	YES		NULL	
end	date	YES		NULL	
+-------+----------------------+------+-----+---------+-------+					
mysql> SELECT * FROM client;					
+-----+---------------+					
cid	name				
+-----+---------------+					
101	Seamen's				
103	Lennart AG				
110	MySQL AB				
115	Icoaten & Co.				
125	Nittboad Inc				
+-----+---------------+					
mysql> SELECT * FROM project;					
+-------+-----+-------------+------------+------------+					
pid	cid	name	start	end	
+-------+-----+-------------+------------+------------+					
10000	103	New CMS	2003-01-00	2003-05-00	
10010	110	Texi2XML	2002-04-00	2003-09-00	
10020	110	Studyguides	2002-09-00	2003-03-30	
10030	115	PDC Server	2003-01-00	2003-01-00	
10040	103	Intranet	2009-02-00	NULL	
10050	101	Intranet	NULL	NULL	
10060	115	SMB Server	2003-05-00	NULL	
10070	115	WLAN	NULL	2003-07-00	
+-------+-----+-------------+------------+------------+

Using the client and project tables, you want to retrieve a list of clients that have intranet projects,
using the INNER JOIN syntax, for a report with these column headings:

+----------+---------+-------+------+
| CLIENT | PROJECT | START | END |
+----------+---------+-------+------+

Joins

8

What SQL statement will you issue?

Question 22:

Refer to the structure and sample data for the client and project tables, shown in the previous
question. Using these two tables, you want to retrieve a list of clients that have intranet projects, using
an inner join with the WHERE clause, for a report with these column headings:

+----------+---------+-------+------+
| CLIENT | PROJECT | START | END |
+----------+---------+-------+------+

What SQL statement will you issue?

Question 23:

Refer to the structure and sample data for the client and project tables, shown two questions earli-
er. Using these two tables, you want to retrieve a list of clients and their projects, sorted by client name,
and within client name, sorted by start date, for a report with these column headings:

+----------+---------+-------+------+
| CLIENT | PROJECT | START | END |
+----------+---------+-------+------+

What SQL statement will you issue? Clients without projects should also be displayed.

Question 24:

Here's the structure and sample data for two tables, client and project, which will be used for the
next three questions.

mysql> DESCRIBE client;
+-------+----------------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------+----------------------+------+-----+---------+-------+
| cid | smallint(5) unsigned | NO | PRI | 0 | |
| name | char(20) | NO | | | |
+-------+----------------------+------+-----+---------+-------+
mysql> DESCRIBE project;
+-------+----------------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------+----------------------+------+-----+---------+-------+
pid	int(10) unsigned	NO	PRI	0	
cid	smallint(5) unsigned	NO		0	
name	char(30)	NO			
start	date	YES		NULL	
end	date	YES		NULL	
+-------+----------------------+------+-----+---------+-------+					
mysql> SELECT * FROM client;					
+-----+---------------+					
cid	name				
+-----+---------------+					
101	Seamen's				
103	Lennart AG				
110	MySQL AB				
115	Icoaten & Co.				
125	Nittboad Inc				
+-----+---------------+
mysql> SELECT * FROM project;

Joins

9

+-------+-----+-------------+------------+------------+
| pid | cid | name | start | end |
+-------+-----+-------------+------------+------------+
10000	103	New CMS	2003-01-00	2003-05-00
10010	110	Texi2XML	2002-04-00	2003-09-00
10020	110	Studyguides	2002-09-00	2003-03-30
10030	115	PDC Server	2003-01-00	2003-01-00
10040	103	Intranet	2009-02-00	NULL
10050	101	Intranet	NULL	NULL
10060	115	SMB Server	2003-05-00	NULL
10070	115	WLAN	NULL	2003-07-00
+-------+-----+-------------+------------+------------+

Using the client and project tables, you want to retrieve a list of clients that have no projects for a
report with these column headings:

+----------+---------+-------+------+
| CLIENT | PROJECT | START | END |
+----------+---------+-------+------+

What SQL statement will you issue?

Question 25:

Refer to the structure and sample data for the client and project tables, shown in the previous
question. Using these two tables, you want to retrieve a list of clients that have projects starting in the
year 2003, sorted by start date, for a report with these column headings:

+----------+---------+-------+------+
| CLIENT | PROJECT | START | END |
+----------+---------+-------+------+

What SQL statement will you issue?

Question 26:

Refer to the structure and sample data for the client and project tables, shown two questions earli-
er. Using these two tables, you want to retrieve a list of clients that have intranet projects, using the
LEFT JOIN syntax, for a report with these column headings:

+----------+---------+-------+------+
| CLIENT | PROJECT | START | END |
+----------+---------+-------+------+

What SQL statement will you issue?

Question 27:

Here's the structure and sample data for two tables, client and project, which will be used for the
next three questions.

mysql> DESCRIBE client;
+-------+----------------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------+----------------------+------+-----+---------+-------+
| cid | smallint(5) unsigned | NO | PRI | 0 | |
| name | char(20) | NO | | | |
+-------+----------------------+------+-----+---------+-------+

Joins

10

mysql> DESCRIBE project;
+-------+----------------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------+----------------------+------+-----+---------+-------+
pid	int(10) unsigned	NO	PRI	0	
cid	smallint(5) unsigned	NO		0	
name	char(30)	NO			
start	date	YES		NULL	
end	date	YES		NULL	
+-------+----------------------+------+-----+---------+-------+					
mysql> SELECT * FROM client;					
+-----+---------------+					
cid	name				
+-----+---------------+					
101	Seamen's				
103	Lennart AG				
110	MySQL AB				
115	Icoaten & Co.				
125	Nittboad Inc				
+-----+---------------+					
mysql> SELECT * FROM project;					
+-------+-----+-------------+------------+------------+					
pid	cid	name	start	end	
+-------+-----+-------------+------------+------------+					
10000	103	New CMS	2003-01-00	2003-05-00	
10010	110	Texi2XML	2002-04-00	2003-09-00	
10020	110	Studyguides	2002-09-00	2003-03-30	
10030	115	PDC Server	2003-01-00	2003-01-00	
10040	103	Intranet	2009-02-00	NULL	
10050	101	Intranet	NULL	NULL	
10060	115	SMB Server	2003-05-00	NULL	
10070	115	WLAN	NULL	2003-07-00	
+-------+-----+-------------+------------+------------+

Using the client and project tables, you want to retrieve a list of clients that have intranet projects,
using the INNER JOIN syntax, for a report with these column headings:

+----------+---------+-------+------+
| CLIENT | PROJECT | START | END |
+----------+---------+-------+------+

What SQL statement will you issue?

Question 28:

Refer to the structure and sample data for the client and project tables, shown in the previous
question. Using these two tables, you want to retrieve a list of clients that have intranet projects, using
an inner join with the WHERE clause, for a report with these column headings:

+----------+---------+-------+------+
| CLIENT | PROJECT | START | END |
+----------+---------+-------+------+

What SQL statement will you issue?

Question 29:

Refer to the structure and sample data for the client and project tables, shown two questions earli-
er. Using these two tables, you want to retrieve a list of clients and their projects, sorted by client name,
and within client name, sorted by start date, for a report with these column headings:

Joins

11

+----------+---------+-------+------+
| CLIENT | PROJECT | START | END |
+----------+---------+-------+------+

What SQL statement will you issue? Clients without projects should also be displayed.

Question 30:

Here's the structure and sample data for two tables, client and project.

mysql> DESCRIBE client;
+-------+----------------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------+----------------------+------+-----+---------+-------+
| cid | smallint(5) unsigned | NO | PRI | 0 | |
| name | char(20) | NO | | | |
+-------+----------------------+------+-----+---------+-------+
mysql> DESCRIBE project;
+-------+----------------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------+----------------------+------+-----+---------+-------+
pid	int(10) unsigned	NO	PRI	0	
cid	smallint(5) unsigned	NO		0	
name	char(30)	NO			
start	date	YES		NULL	
end	date	YES		NULL	
+-------+----------------------+------+-----+---------+-------+					
mysql> SELECT * FROM client;					
+-----+---------------+					
cid	name				
+-----+---------------+					
101	Seamen's				
103	Lennart AG				
110	MySQL AB				
115	Icoaten & Co.				
125	Nittboad Inc				
+-----+---------------+					
mysql> SELECT * FROM project;					
+-------+-----+-------------+------------+------------+					
pid	cid	name	start	end	
+-------+-----+-------------+------------+------------+					
10000	103	New CMS	2003-01-00	2003-05-00	
10010	110	Texi2XML	2002-04-00	2003-09-00	
10020	110	Studyguides	2002-09-00	2003-03-30	
10030	115	PDC Server	2003-01-00	2003-01-00	
10040	103	Intranet	2009-02-00	NULL	
10050	101	Intranet	NULL	NULL	
10060	115	SMB Server	2003-05-00	NULL	
10070	115	WLAN	NULL	2003-07-00	
+-------+-----+-------------+------------+------------+

Using the client and project tables, you want to retrieve a list of clients and their projects, sorted
by client name, and within client name, sorted by start date, for a report with these column headings:

+----------+---------+-------+------+
| CLIENT | PROJECT | START | END |
+----------+---------+-------+------+

What SQL statement will you issue? Clients without projects should be displayed, but projects that don't

Joins

12

have a start date and projects that don't have an end date should not be displayed.

Answers to Exercises

Answer 1:

Any kind of join can find matches between tables.

Answer 2:

Outer joins, that is, LEFT JOIN and RIGHT JOIN.

Answer 3:

mysql> SELECT Name, Language
-> FROM Country, CountryLanguage
-> WHERE Code = CountryCode
-> AND IsOfficial = 'T';

+--------------------------------------+------------------+
| Name | Language |
+--------------------------------------+------------------+
Afghanistan	Pashto
Netherlands	Dutch
Netherlands Antilles	Papiamento
Albania	Albaniana
Algeria	Arabic
American Samoa	Samoan
...	
South Africa	English
Luxembourg	German
Nauru	English
Pakistan	Urdu
Northern Mariana Islands	English
+--------------------------------------+------------------+

Answer 4:

mysql> SELECT Name, Language
-> FROM Country INNER JOIN CountryLanguage
-> ON Code = CountryCode
-> WHERE IsOfficial = 'T';

+--------------------------------------+------------------+
| Name | Language |
+--------------------------------------+------------------+
Afghanistan	Pashto
Netherlands	Dutch
Netherlands Antilles	Papiamento
Albania	Albaniana
Algeria	Arabic
American Samoa	Samoan
...	
South Africa	English
Luxembourg	German
Nauru	English
Pakistan	Urdu
Northern Mariana Islands	English
+--------------------------------------+------------------+

You can only use the ON clause because the column names of the join columns differ in the two tables

Joins

13

Code and CountryCode).

Answer 5:

mysql> SELECT Country.Name, City.Name, City.Population
-> FROM Country
-> INNER JOIN City
-> ON CountryCode = Code
-> WHERE IndepYear IS NULL;

+---------------------------+-------------------------+------------+
| Name | Name | Population |
+---------------------------+-------------------------+------------+
Netherlands Antilles	Willemstad	2345
American Samoa	Tafuna	5200
American Samoa	Fagatogo	2323
...		
Palestine	Jabaliya	113901
Palestine	Nablus	100231
Palestine	Rafah	92020
+---------------------------+-------------------------+------------+

Answer 6:

mysql> SELECT Country.Name, SUM(City.Population)
-> FROM Country
-> INNER JOIN City
-> ON CountryCode = Code
-> WHERE IndepYear IS NULL
-> GROUP BY Country.Name;

+---------------------------+----------------------+
| Name | SUM(City.Population) |
+---------------------------+----------------------+
American Samoa	7523
Anguilla	1556
Aruba	29034
...	
Virgin Islands, U.S.	13000
Wallis and Futuna	1137
Western Sahara	169000
+---------------------------+----------------------+

Answer 7:

A join that combines all rows in one table with all rows in another table is called a Cartesian product.
You get a Cartesian product by not specifying a WHERE clause in a join that uses the comma operator,
like this:

mysql> SELECT column, column, ... FROM City, Country;

This will result in a big result set. The number of rows this would produced can be calculated by mul-
tiplying the number of rows in both tables:

mysql> SET @CityCount = (SELECT COUNT(*) FROM City);

mysql> SET @CountryCount = (SELECT COUNT(*) FROM Country);

mysql> SELECT @CityCount * @CountryCount;
+----------------------------+
| @CityCount * @CountryCount |

Joins

14

+----------------------------+
| 974881 |
+----------------------------+

You can avoid creating Cartesian products by accident by starting the mysql command-line client with
the --safe-updates option.

Answer 8:

With two tables, it's always possible to rewrite a LEFT JOIN as a RIGHT JOIN. This might,
however, not be possible for a join that involves more than two tables.

Answer 9:

It's necessary to qualify column names with table names whenever columns of joined tables have the
same name. Even when that's not the case, it makes joins easier to understand when column names are
qualified with table names, because that makes it instantly clear which tables the columns stem from.

Answer 10:

Whenever tables from more than one database are joined that have the same name.

Answer 11:

This is the case when a table is joined with itself (self-join). For example, to find out which countries
have the same number of inhabitants, you would join the Country table with itself. To resolve name
conflicts, you need to create aliases for the joined tables:

mysql> SELECT c1.Name, c2.Name, c1.Population
-> FROM Country AS c1, Country AS c2
-> WHERE c1.Population = c2.Population
-> AND c1.Name != c2.Name AND c1.Population > 0;

+--------------------------+--------------------------+------------+
| Name | Name | Population |
+--------------------------+--------------------------+------------+
Antigua and Barbuda	American Samoa	68000
Northern Mariana Islands	Andorra	78000
American Samoa	Antigua and Barbuda	68000
Saint Kitts and Nevis	Cayman Islands	38000
Niue	Falkland Islands	2000
Norfolk Island	Falkland Islands	2000
Tokelau	Falkland Islands	2000
Tuvalu	Nauru	12000
Falkland Islands	Niue	2000
Norfolk Island	Niue	2000
Tokelau	Niue	2000
Falkland Islands	Norfolk Island	2000
Niue	Norfolk Island	2000
Tokelau	Norfolk Island	2000
Andorra	Northern Mariana Islands	78000
Cayman Islands	Saint Kitts and Nevis	38000
Falkland Islands	Tokelau	2000
Niue	Tokelau	2000
Norfolk Island	Tokelau	2000
Nauru	Tuvalu	12000
+--------------------------+--------------------------+------------+
20 rows in set (0.03 sec)

Note that AND c1.Name != c2.Name avoids comparing countries with themselves, and AND
c1.Population > 0 excludes the countries that have a zero population number.

Joins

15

Answer 12:

In MySQL, joins work for INSERT, UPDATE, and DELETE statements. It's possible to change data in
more than one table when joining tables in an UPDATE or DELETE statement.

Answer 13:

This statement retrieves a list of the countries in South America that have a larger surface area than
Paraguay:

mysql> SELECT
-> c1.Name AS 'Country',
-> c2.Name AS 'Other Countries',
-> c2.Continent AS 'Continent',
-> c2.SurfaceArea AS 'Surface Area'
-> FROM Country AS c1
-> INNER JOIN Country AS c2
-> USING (Continent)
-> WHERE c2.SurfaceArea > c1.SurfaceArea
-> AND c1.Name = 'Paraguay'
-> ;

+----------+-----------------+---------------+--------------+
| Country | Other Countries | Continent | Surface Area |
+----------+-----------------+---------------+--------------+
Paraguay	Argentina	South America	2780400.00
Paraguay	Bolivia	South America	1098581.00
Paraguay	Brazil	South America	8547403.00
Paraguay	Chile	South America	756626.00
Paraguay	Colombia	South America	1138914.00
Paraguay	Peru	South America	1285216.00
Paraguay	Venezuela	South America	912050.00
+----------+-----------------+---------------+--------------+

Answer 14:

This statement retrieves a list of all countries whose population is greater than or equal to that of Ger-
many:

mysql> SELECT
-> c1.Name AS 'Country',
-> c2.Name AS 'Other Countries',
-> c2.Population AS 'Population'
-> FROM Country AS c1, Country AS c2
-> WHERE c2.Population >= c1.Population
-> AND c1.Name = 'Germany'
-> ORDER BY c2.Population DESC
-> ;

+---------+--------------------+------------+
| Country | Other Countries | Population |
+---------+--------------------+------------+
Germany	China	1277558000
Germany	India	1013662000
Germany	United States	278357000
Germany	Indonesia	212107000
Germany	Brazil	170115000
Germany	Pakistan	156483000
Germany	Russian Federation	146934000
Germany	Bangladesh	129155000
Germany	Japan	126714000
Germany	Nigeria	111506000
Germany	Mexico	98881000
Germany	Germany	82164700

Joins

16

+---------+--------------------+------------+

Answer 15:

This statement retrieves a list of all countries whose population and surface area are greater than or
equal to that of Nepal:

mysql> SELECT
-> c1.Name AS 'Country',
-> c2.Name AS 'Other Countries',
-> LEFT(c2.Region,10) AS 'Region',
-> c2.Population AS 'Population',
-> c2.SurfaceArea AS 'Surface'
-> FROM Country AS c1, Country AS c2
-> WHERE c1.Region = c2.Region
-> AND c2.SurfaceArea >= c1.SurfaceArea
-> AND c2.Population >= c1.Population
-> AND c1.Name = 'Nepal'
-> ORDER BY c2.Population DESC
-> ;

+---------+-----------------+------------+------------+------------+
| Country | Other Countries | Region | Population | Surface |
+---------+-----------------+------------+------------+------------+
Nepal	India	Southern a	1013662000	3287263.00
Nepal	Pakistan	Southern a	156483000	796095.00
Nepal	Iran	Southern a	67702000	1648195.00
Nepal	Uzbekistan	Southern a	24318000	447400.00
Nepal	Nepal	Southern a	23930000	147181.00
+---------+-----------------+------------+------------+------------+

Answer 16:

The statements will return the following result sets:

+---------------+-------------+------------+------------+
| name | name | start | end |
+---------------+-------------+------------+------------+
Seamen's	New CMS	2003-01-00	2003-05-00
Lennart AG	New CMS	2003-01-00	2003-05-00
MySQL AB	New CMS	2003-01-00	2003-05-00
Icoaten & Co.	New CMS	2003-01-00	2003-05-00
Nittboad Inc	New CMS	2003-01-00	2003-05-00
Seamen's	Texi2XML	2002-04-00	2003-09-00
Lennart AG	Texi2XML	2002-04-00	2003-09-00
MySQL AB	Texi2XML	2002-04-00	2003-09-00
Icoaten & Co.	Texi2XML	2002-04-00	2003-09-00
Nittboad Inc	Texi2XML	2002-04-00	2003-09-00
Seamen's	Studyguides	2002-09-00	2003-03-30
Lennart AG	Studyguides	2002-09-00	2003-03-30
MySQL AB	Studyguides	2002-09-00	2003-03-30
Icoaten & Co.	Studyguides	2002-09-00	2003-03-30
Nittboad Inc	Studyguides	2002-09-00	2003-03-30
Seamen's	PDC Server	2003-01-00	2003-01-00
Lennart AG	PDC Server	2003-01-00	2003-01-00
MySQL AB	PDC Server	2003-01-00	2003-01-00
Icoaten & Co.	PDC Server	2003-01-00	2003-01-00
Nittboad Inc	PDC Server	2003-01-00	2003-01-00
Seamen's	Intranet	2009-02-00	NULL
Lennart AG	Intranet	2009-02-00	NULL
MySQL AB	Intranet	2009-02-00	NULL
Icoaten & Co.	Intranet	2009-02-00	NULL
Nittboad Inc	Intranet	2009-02-00	NULL

Joins

17

Seamen's	Intranet	NULL	NULL
Lennart AG	Intranet	NULL	NULL
MySQL AB	Intranet	NULL	NULL
Icoaten & Co.	Intranet	NULL	NULL
Nittboad Inc	Intranet	NULL	NULL
Seamen's	SMB Server	2003-05-00	NULL
Lennart AG	SMB Server	2003-05-00	NULL
MySQL AB	SMB Server	2003-05-00	NULL
Icoaten & Co.	SMB Server	2003-05-00	NULL
Nittboad Inc	SMB Server	2003-05-00	NULL
Seamen's	WLAN	NULL	2003-07-00
Lennart AG	WLAN	NULL	2003-07-00
MySQL AB	WLAN	NULL	2003-07-00
Icoaten & Co.	WLAN	NULL	2003-07-00
Nittboad Inc	WLAN	NULL	2003-07-00
+---------------+-------------+------------+------------+
40 rows in set (0.00 sec)

+---------------+-------------+------------+------------+
| name | name | start | end |
+---------------+-------------+------------+------------+
Seamen's	Intranet	NULL	NULL
Lennart AG	New CMS	2003-01-00	2003-05-00
Lennart AG	Intranet	2009-02-00	NULL
MySQL AB	Texi2XML	2002-04-00	2003-09-00
MySQL AB	Studyguides	2002-09-00	2003-03-30
Icoaten & Co.	PDC Server	2003-01-00	2003-01-00
Icoaten & Co.	SMB Server	2003-05-00	NULL
Icoaten & Co.	WLAN	NULL	2003-07-00
+---------------+-------------+------------+------------+
8 rows in set (0.00 sec)

Answer 17:

The statements will return the following result sets:

+---------------+-------------+------------+------------+
| name | name | start | end |
+---------------+-------------+------------+------------+
Lennart AG	New CMS	2003-01-00	2003-05-00
Lennart AG	Intranet	2009-02-00	NULL
MySQL AB	Texi2XML	2002-04-00	2003-09-00
MySQL AB	Studyguides	2002-09-00	2003-03-30
Icoaten & Co.	PDC Server	2003-01-00	2003-01-00
Icoaten & Co.	SMB Server	2003-05-00	NULL
+---------------+-------------+------------+------------+
6 rows in set (0.01 sec)

+---------------+-------------+------------+------------+
| name | name | start | end |
+---------------+-------------+------------+------------+
Lennart AG	New CMS	2003-01-00	2003-05-00
MySQL AB	Texi2XML	2002-04-00	2003-09-00
MySQL AB	Studyguides	2002-09-00	2003-03-30
Icoaten & Co.	PDC Server	2003-01-00	2003-01-00
+---------------+-------------+------------+------------+
4 rows in set (0.00 sec)

Answer 18:

Here's one SQL statement that accomplishes the task:

Joins

18

mysql> SELECT
-> c.name AS CLIENT, p.name AS PROJECT,
-> p.start AS START, p.end AS END
-> FROM client AS c
-> LEFT JOIN project AS p
-> USING (cid)
-> WHERE p.cid IS NULL
-> ORDER BY CLIENT
-> ;

+--------------+---------+-------+------+
| CLIENT | PROJECT | START | END |
+--------------+---------+-------+------+
| Nittboad Inc | NULL | NULL | NULL |
+--------------+---------+-------+------+

Answer 19:

Here's one SQL statement that accomplishes the task:

mysql> SELECT
-> c.name AS CLIENT, p.name AS PROJECT,
-> p.start AS START, p.end AS END
-> FROM client AS c
-> LEFT JOIN project AS p
-> USING (cid)
-> WHERE p.start BETWEEN '2003-01-00' AND '2003-12-31'
-> ORDER BY START
-> ;

+---------------+------------+------------+------------+
| CLIENT | PROJECT | START | END |
+---------------+------------+------------+------------+
Lennart AG	New CMS	2003-01-00	2003-05-00
Icoaten & Co.	PDC Server	2003-01-00	2003-01-00
Icoaten & Co.	SMB Server	2003-05-00	NULL
+---------------+------------+------------+------------+

Answer 20:

This statement accomplishes the task:

mysql> SELECT
-> c.name AS CLIENT, p.name AS PROJECT,
-> p.start AS START, p.end AS END
-> FROM client AS c
-> LEFT JOIN project AS p
-> USING (cid) /* or: ON c.cid = p.cid */
-> WHERE p.name = 'Intranet'
-> ;

+------------+----------+------------+------+
| CLIENT | PROJECT | START | END |
+------------+----------+------------+------+
| Seamen's | Intranet | NULL | NULL |
| Lennart AG | Intranet | 2009-02-00 | NULL |
+------------+----------+------------+------+

Answer 21:

This statement accomplishes the task:

mysql> SELECT

Joins

19

-> c.name AS CLIENT, p.name AS PROJECT,
-> p.start AS START, p.end AS END
-> FROM client AS c
-> INNER JOIN project AS p
-> USING (cid) /* or: ON c.cid = p.cid */
-> WHERE p.name = 'Intranet'
-> ;

+------------+----------+------------+------+
| CLIENT | PROJECT | START | END |
+------------+----------+------------+------+
| Seamen's | Intranet | NULL | NULL |
| Lennart AG | Intranet | 2009-02-00 | NULL |
+------------+----------+------------+------+

Answer 22:

This statement accomplishes the task:

mysql> SELECT
-> c.name AS CLIENT, p.name AS PROJECT,
-> p.start AS START, p.end AS END
-> FROM client AS c, project AS p
-> WHERE c.cid = p.cid
-> AND p.name = 'Intranet'
-> ;

+------------+----------+------------+------+
| CLIENT | PROJECT | START | END |
+------------+----------+------------+------+
| Seamen's | Intranet | NULL | NULL |
| Lennart AG | Intranet | 2009-02-00 | NULL |
+------------+----------+------------+------+

Answer 23:

Here's one SQL statement that accomplishes the task:

mysql> SELECT
-> c.name AS CLIENT, p.name AS PROJECT,
-> p.start AS START, p.end AS END
-> FROM client AS c
-> LEFT JOIN project AS p
-> USING (cid) /* or: ON c.cid = p.cid */
-> ORDER BY c.name, p.start;

+---------------+-------------+------------+------------+
| CLIENT | PROJECT | START | END |
+---------------+-------------+------------+------------+
Icoaten & Co.	WLAN	NULL	2003-07-00
Icoaten & Co.	PDC Server	2003-01-00	2003-01-00
Icoaten & Co.	SMB Server	2003-05-00	NULL
Lennart AG	New CMS	2003-01-00	2003-05-00
Lennart AG	Intranet	2009-02-00	NULL
MySQL AB	Texi2XML	2002-04-00	2003-09-00
MySQL AB	Studyguides	2002-09-00	2003-03-30
Nittboad Inc	NULL	NULL	NULL
Seamen's	Intranet	NULL	NULL
+---------------+-------------+------------+------------+

Answer 24:

Here's one SQL statement that accomplishes the task:

Joins

20

mysql> SELECT
-> c.name AS CLIENT, p.name AS PROJECT,
-> p.start AS START, p.end AS END
-> FROM client AS c
-> LEFT JOIN project AS p
-> USING (cid)
-> WHERE p.cid IS NULL
-> ;

+--------------+---------+-------+------+
| CLIENT | PROJECT | START | END |
+--------------+---------+-------+------+
| Nittboad Inc | NULL | NULL | NULL |
+--------------+---------+-------+------+

Answer 25:

Here's one SQL statement that accomplishes the task:

mysql> SELECT
-> c.name AS CLIENT, p.name AS PROJECT,
-> p.start AS START, p.end AS END
-> FROM client AS c
-> LEFT JOIN project AS p
-> USING (cid)
-> WHERE p.start BETWEEN '2003-01-00' AND '2003-12-31'
-> ORDER BY START
-> ;

+---------------+------------+------------+------------+
| CLIENT | PROJECT | START | END |
+---------------+------------+------------+------------+
Lennart AG	New CMS	2003-01-00	2003-05-00
Icoaten & Co.	PDC Server	2003-01-00	2003-01-00
Icoaten & Co.	SMB Server	2003-05-00	NULL
+---------------+------------+------------+------------+

Answer 26:

This statement accomplishes the task:

mysql> SELECT
-> c.name AS CLIENT, p.name AS PROJECT,
-> p.start AS START, p.end AS END
-> FROM client AS c
-> LEFT JOIN project AS p
-> USING (cid) /* or: ON c.cid = p.cid */
-> WHERE p.name = 'Intranet'
-> ;

+------------+----------+------------+------+
| CLIENT | PROJECT | START | END |
+------------+----------+------------+------+
| Seamen's | Intranet | NULL | NULL |
| Lennart AG | Intranet | 2009-02-00 | NULL |
+------------+----------+------------+------+

Answer 27:

This statement accomplishes the task:

mysql> SELECT
-> c.name AS CLIENT, p.name AS PROJECT,

Joins

21

-> p.start AS START, p.end AS END
-> FROM client AS c
-> INNER JOIN project AS p
-> USING (cid) /* or: ON c.cid = p.cid */
-> WHERE p.name = 'Intranet'
-> ;

+------------+----------+------------+------+
| CLIENT | PROJECT | START | END |
+------------+----------+------------+------+
| Seamen's | Intranet | NULL | NULL |
| Lennart AG | Intranet | 2009-02-00 | NULL |
+------------+----------+------------+------+

Answer 28:

This statement accomplishes the task:

mysql> SELECT
-> c.name AS CLIENT, p.name AS PROJECT,
-> p.start AS START, p.end AS END
-> FROM client AS c, project AS p
-> WHERE c.cid = p.cid
-> AND p.name = 'Intranet'
-> ;

+------------+----------+------------+------+
| CLIENT | PROJECT | START | END |
+------------+----------+------------+------+
| Seamen's | Intranet | NULL | NULL |
| Lennart AG | Intranet | 2009-02-00 | NULL |
+------------+----------+------------+------+

Answer 29:

Here's one SQL statement that accomplishes the task:

mysql> SELECT
-> c.name AS CLIENT, p.name AS PROJECT,
-> p.start AS START, p.end AS END
-> FROM client AS c
-> LEFT JOIN project AS p
-> USING (cid) /* or: ON c.cid = p.cid */
-> ORDER BY c.name, p.start;

+---------------+-------------+------------+------------+
| CLIENT | PROJECT | START | END |
+---------------+-------------+------------+------------+
Icoaten & Co.	WLAN	NULL	2003-07-00
Icoaten & Co.	PDC Server	2003-01-00	2003-01-00
Icoaten & Co.	SMB Server	2003-05-00	NULL
Lennart AG	New CMS	2003-01-00	2003-05-00
Lennart AG	Intranet	2009-02-00	NULL
MySQL AB	Texi2XML	2002-04-00	2003-09-00
MySQL AB	Studyguides	2002-09-00	2003-03-30
Nittboad Inc	NULL	NULL	NULL
Seamen's	Intranet	NULL	NULL
+---------------+-------------+------------+------------+

Answer 30:

Here's one SQL statement that accomplishes the task:

mysql> SELECT

Joins

22

-> c.name AS CLIENT, p.name AS PROJECT,
-> p.start AS START, p.end AS END
-> FROM client AS c
-> LEFT JOIN project AS p
-> USING (cid) /* or: ON c.cid = p.cid */
-> WHERE p.start IS NOT NULL
-> AND p.end IS NOT NULL
-> ORDER BY c.name ASC, p.start ASC
-> ;

+---------------+-------------+------------+------------+
| CLIENT | PROJECT | START | END |
+---------------+-------------+------------+------------+
Icoaten & Co.	PDC Server	2003-01-00	2003-01-00
Lennart AG	New CMS	2003-01-00	2003-05-00
MySQL AB	Texi2XML	2002-04-00	2003-09-00
MySQL AB	Studyguides	2002-09-00	2003-03-30
+---------------+-------------+------------+------------+

Joins

23

Chapter 13. Subqueries
Almost all examples and exercises in this study guide use the world database as the sample data set. The
accompanying CD-ROM contains the data for this database and instructions that describe how to create
and populate the database for use with your own MySQL installation.

Question 1:

Where in an SQL statement may a scalar subquery be placed?

Question 2:

The following query selects those continents that have countries in which more than 50% of the popula-
tion speak English. Is this an example of using a correlated subquery? Why or why not?

SELECT DISTINCT Continent
FROM Country
WHERE Code IN (SELECT CountryCode

FROM CountryLanguage
WHERE Language='English'
AND Percentage>50

);

Question 3:

The following statement uses a non-correlated subquery to find the South American country with the
smallest population:

SELECT * FROM Country
WHERE Continent = 'South America'
AND Population = (SELECT MIN(Population) FROM Country

WHERE Continent = 'South America');

Rewrite the statement to use a correlated subquery.

Question 4:

What is the effect of executing the following query?

SELECT Continent, Name
FROM Country c1
WHERE Population >= ALL (SELECT Population

FROM Country c2
WHERE c1.Continent=c2.Continent
);

Question 5:

What is the effect of executing the following query? (Compare to the previous exercise.)

SELECT Continent, Name
FROM Country
WHERE SurfaceArea > ANY (SELECT AVG(SurfaceArea)

FROM Country
GROUP BY Continent
);

24

Question 6:

How would you use a subquery to write a SELECT statement that answers the following question: What
is the largest country (in terms of surface area) on each continent?

Question 7:

How would you use IN and a subquery to write a SELECT statement that answers the following ques-
tion: What languages are spoken in countries where the form of government is a monarchy? Sort the lan-
guages lexically.

Question 8:

How would you use EXISTS and a subquery to write a SELECT statement that answers the following
question: In what countries are people that speak German found? Order the country names lexically.

Question 9:

How would you use a row constructor to find the population of Houston, Texas, USA?

Question 10:

Using a SELECT statement with a subquery in the FROM clause, find the number of people in the region
“Western Europe” that speak German as their mother tongue. The answer must be returned as a scalar.

Question 11:

Why is the following use of a subquery in the FROM clause not correct?

SELECT Name, Language
FROM Country AS c, (SELECT Language

FROM CountryLanguage
WHERE CountryCode = c.Code
) AS tmp;

Question 12:

Joe wants to create a table of country capitals. He creates the Capitals table by copying the structure
and data of the City table, but then by mistake copies all of the data from the City table into the
Capitals table:

mysql> CREATE TABLE Capitals LIKE City;
Query OK, 0 rows affected (0.01 sec)

mysql> INSERT INTO Capitals SELECT * FROM City;
Query OK, 4079 rows affected (0.08 sec)
Records: 4079 Duplicates: 0 Warnings: 0

The city ID of a country's capital is stored in the Capital field of the Country table. Using a sub-
query, how can Joe remove all the non-capital cities from the Capitals table?

Question 13:

The following two tables, client and project, are used for the next three questions.

mysql> SELECT * FROM client;
+------+---------------+

Subqueries

25

| id | name |
+------+---------------+
101	Seamen's
103	Lennart AG
110	MySQL AB
115	Icoaten & Co.
125	Nittboad Inc
+------+---------------+	
mysql> SELECT * FROM project;	
+-------+------+-------------+------------+------------+	
pid	id
+-------+------+-------------+------------+------------+	
10000	103
10010	110
10020	110
10030	115
10040	103
10050	101
10060	115
10070	115
10080	135
10090	145
+-------+------+-------------+------------+------------+

The client and project tables are related through their common column (id). Thus, the following
statement could be used to determine which projects have clients (that is, which projects have an id
whose value is the same as one of the id values found in the client table):

SELECT ... FROM project WHERE project.id IN
(SELECT client.id FROM client)

How would you rewrite the statement using the LEFT JOIN operator? Your output should have
column headings like this:

+------------+--------------+-----------+---------------+
| Project ID | Project Name | Client No | Client Name |
+------------+--------------+-----------+---------------+

Question 14:

Recall that the client and project tables shown in the previous question are related through their
common column (id). This SQL statement produces a list of projects that have an id whose value is
the same as one of the id values found in the client table:

SELECT ... FROM project WHERE project.id IN
(SELECT client.id FROM client)

How would you rewrite the statement using the RIGHT JOIN operator? Your output should have
column headings like this:

+------------+--------------+-----------+---------------+
| Project ID | Project Name | Client No | Client Name |
+------------+--------------+-----------+---------------+

Question 15:

Recall that the client and project tables shown two questions earlier are related through their com-
mon column (id). This SQL statement produces a list of projects that have an id whose value is the

Subqueries

26

same as one of the id values found in the client table:

SELECT ... FROM project WHERE project.id IN
(SELECT client.id FROM client)

How would you rewrite the statement using the INNER JOIN operator? Your output should have
column headings like this:

+------------+--------------+-----------+---------------+
| Project ID | Project Name | Client No | Client Name |
+------------+--------------+-----------+---------------+

Question 16:

The following two tables, client and project, are used for the next three questions.

mysql> SELECT * FROM client;
+------+---------------+
| id | name |
+------+---------------+
101	Seamen's
103	Lennart AG
110	MySQL AB
115	Icoaten & Co.
125	Nittboad Inc
+------+---------------+	
mysql> SELECT * FROM project;	
+-------+------+-------------+------------+------------+	
pid	id
+-------+------+-------------+------------+------------+	
10000	103
10010	110
10020	110
10030	115
10040	103
10050	101
10060	115
10070	115
10080	135
10090	145
+-------+------+-------------+------------+------------+

The client and project tables are related through their common column (id). Thus, the following
statement could be used to determine which projects don't have clients (that is, which projects have an
id whose value is not the same as one of the id values found in the client table):

SELECT ... FROM project WHERE project.id NOT IN
(SELECT client.id FROM client)

How would you rewrite the statement using the LEFT JOIN operator? Your output should have
column headings like this:

+------------+--------------+-----------+---------------+
| Project ID | Project Name | Client No | Client Name |
+------------+--------------+-----------+---------------+

Question 17:

Subqueries

27

Recall that the client and project tables shown in the previous question are related through their
common column (id). This SQL statement produces a list of projects that have an id whose value is
not the same as one of the id values found in the client table:

SELECT ... FROM project WHERE project.id NOT IN
(SELECT client.id FROM client)

How would you rewrite the statement using the RIGHT JOIN operator? Your output should have
column headings like this:

+------------+--------------+-----------+---------------+
| Project ID | Project Name | Client No | Client Name |
+------------+--------------+-----------+---------------+

Question 18:

Recall that the client and project tables shown two questions earlier are related through their com-
mon column (id). This SQL statement produces a list of projects that have an id whose value is not the
same as one of the id values found in the client table:

SELECT ... FROM project WHERE project.id NOT IN
(SELECT client.id FROM client)

How would you rewrite the statement using the INNER JOIN operator? Your output should have
column headings like this:

+------------+--------------+-----------+---------------+
| Project ID | Project Name | Client No | Client Name |
+------------+--------------+-----------+---------------+

Question 19:

We would like to execute a query on the world database that returns the name of a country with the
highest number of official languages, the number of official languages in that country, and what those
languages are. What should be inserted for each “...” in the following statement to accomplish this
task?

SELECT CONCAT(
'The country ',
... ,
' has ',
... ,
' official languages: ',
...
);

Hint: This exercise covers more subjects discussed in the text than you might initially think. Do test your
solution on the world database before looking at the answer.

Answers to Exercises

Answer 1:

A scalar subquery may be placed almost anywhere in an SQL statement that a scalar value, such as a
true scalar, an argument to a function call, a term of a mathematical expression, and so forth, is expec-
ted. Exceptions include contexts in which a literal scalar is required, such as for arguments in LIMIT

Subqueries

28

clauses.

Answer 2:

The example shown is not an example of a correlated subquery because the subquery can be resolved
completely without regard to the outer query. In a correlated subquery, the inner SELECT is dependent
on the outer query.

Answer 3:

SELECT * FROM Country c1
WHERE Continent = 'South America'
AND Population = (SELECT MIN(Population) FROM Country c2

WHERE c2.Continent = c1.Continent);

In the subquery, c1 depends on the outer query, because the c1 table alias is defined in the outer query.

Answer 4:

The query returns, for each continent, the country whose population is greater than or equal to the popu-
lation of every country on the same continent. In other words, it returns the country with the greatest
population on each continent.

Answer 5:

The query returns all the countries that have a surface area larger than the average surface area of the
countries on any continent. The difference between this and the earlier query is that this is not a correl-
ated subquery, so it is not restricted to comparing only to the surface area of the continent where the
country is located. (For example, instead of AVG(Surface), you could use AVG(Population), al-
though that would not yield in a meaningful result.)

Answer 6:

In the following query, the subquery returns the largest surface area found on each continent. This in-
formation is then used in the outer query to find the country on the same continent that has that surface
area:

mysql> SELECT Continent C, Name, SurfaceArea
-> FROM Country
-> WHERE SurfaceArea = (
-> SELECT MAX(SurfaceArea)
-> FROM Country
-> WHERE Continent = C);

+---------------+--------------------+-------------+
| C | Name | SurfaceArea |
+---------------+--------------------+-------------+
Oceania	Australia	7741220.00
South America	Brazil	8547403.00
North America	Canada	9970610.00
Asia	China	9572900.00
Africa	Sudan	2505813.00
Europe	Russian Federation	17075400.00
Antarctica	Antarctica	13120000.00
+---------------+--------------------+-------------+

Answer 7:

In the following query, the subquery returns the country code of countries where the government form is
monarchy. This information is used in the outer query to find the languages spoken in those countries.

Subqueries

29

mysql> SELECT DISTINCT Language
-> FROM CountryLanguage
-> WHERE CountryCode IN (
-> SELECT Code
-> FROM Country
-> Where GovernmentForm = 'Monarchy')
-> ORDER BY Language;

+----------+
| Language |
+----------+
| Arabic |
| Asami |
| Dzongkha |
| English |
| Nepali |
| Swazi |
| Tongan |
| Urdu |
| Zulu |
+----------+

Answer 8:

In the following query, the subquery returns all the languages spoken in a given country. This informa-
tion is then used with the EXISTS predicate to determine if German is one of the languages spoken in
that country.

mysql> SELECT Code c, Name
-> FROM Country
-> WHERE EXISTS (SELECT *
-> FROM CountryLanguage
-> WHERE CountryCode = c
-> AND Language = 'German')
-> ORDER BY Name;

+-----+----------------+
| c | Name |
+-----+----------------+
AUS	Australia
AUT	Austria
BEL	Belgium
BRA	Brazil
CAN	Canada
CZE	Czech Republic
DNK	Denmark
DEU	Germany
HUN	Hungary
ITA	Italy
KAZ	Kazakstan
LIE	Liechtenstein
LUX	Luxembourg
NAM	Namibia
PRY	Paraguay
POL	Poland
ROM	Romania
CHE	Switzerland
USA	United States
+-----+----------------+

Answer 9:

The following query uses a row constructor to look up the population of Houston, Texas, USA in the

Subqueries

30

City table:

mysql> SELECT Population
-> FROM City
-> WHERE (Name, District, CountryCode) = ('Houston', 'Texas', 'USA');

+------------+
| Population |
+------------+
| 1953631 |
+------------+

Answer 10:

The answer must be returned as a scalar value; that is, as a result set with a single row and a single
column. The following query accomplishes the task:

mysql> SELECT SUM(Speakers)
-> FROM (SELECT (Population * Percentage) / 100 AS Speakers
-> FROM CountryLanguage cl, Country c
-> WHERE cl.CountryCode = c.Code
-> AND c.Region = 'Western Europe'
-> AND cl.Language = 'German'
->) AS tmp;

+---------------+
| SUM(Speakers) |
+---------------+
| 87156001.998 |
+---------------+

The subquery finds the number of German speakers for each country in Western Europe. The outer
query sums up those numbers. The tmp alias is necessary because otherwise you would get this error:

ERROR 1248 (42000): Every derived table must have its own alias

Answer 11:

The server returns ERROR 1109 (42S02): Unknown table 'c' in where clause if you
try to execute this query. Subqueries in the FROM clause of a query cannot be correlated with the outer
query.

Answer 12:

The subquery in the following statement searches the City table to identify the city IDs of all capital
cities. The IS NOT NULL clause is needed because a few countries don't have a capital. The outer
statement deletes all rows in the table Capitals that are not found by the subquery:

mysql> DELETE FROM Capitals
-> WHERE ID NOT IN (SELECT Capital
-> FROM Country
-> WHERE Capital IS NOT NULL);

Query OK, 3847 rows affected (1.19 sec)

Answer 13:

Subquery converted to a LEFT JOIN:

mysql> SELECT
-> p.pid AS `Project ID`,
-> p.name AS `Project Name`,

Subqueries

31

-> c.id AS `Client No`,
-> c.name AS `Client Name`
-> FROM project AS p
-> LEFT JOIN client AS c
-> USING (id) /* or: ON p.id = c.id */
-> WHERE c.name IS NOT NULL
-> ;

+------------+--------------+-----------+---------------+
| Project ID | Project Name | Client No | Client Name |
+------------+--------------+-----------+---------------+
10000	New CMS	103	Lennart AG
10010	Texi2XML	110	MySQL AB
10020	Studyguides	110	MySQL AB
10030	PDC Server	115	Icoaten & Co.
10040	Intranet	103	Lennart AG
10050	Intranet	101	Seamen's
10060	SMB Server	115	Icoaten & Co.
10070	WLAN	115	Icoaten & Co.
+------------+--------------+-----------+---------------+

Answer 14:

Subquery converted to a RIGHT JOIN:

mysql> SELECT
-> p.pid AS `Project ID`,
-> p.name AS `Project Name`,
-> c.id AS `Client No`,
-> c.name AS `Client Name`
-> FROM client AS c
-> RIGHT JOIN project AS p
-> USING (id) /* or: ON c.id = p.id */
-> WHERE c.name IS NOT NULL
-> ;

+------------+--------------+-----------+---------------+
| Project ID | Project Name | Client No | Client Name |
+------------+--------------+-----------+---------------+
10000	New CMS	103	Lennart AG
10010	Texi2XML	110	MySQL AB
10020	Studyguides	110	MySQL AB
10030	PDC Server	115	Icoaten & Co.
10040	Intranet	103	Lennart AG
10050	Intranet	101	Seamen's
10060	SMB Server	115	Icoaten & Co.
10070	WLAN	115	Icoaten & Co.
+------------+--------------+-----------+---------------+

Answer 15:

Subquery converted to an INNER JOIN:

mysql> SELECT
-> p.pid AS `Project ID`,
-> p.name AS `Project Name`,
-> c.id AS `Client No`,
-> c.name AS `Client Name`
-> FROM project AS p
-> INNER JOIN client AS c
-> USING (id) /* or: ON p.id = c.id */
-> ;

+------------+--------------+-----------+---------------+
| Project ID | Project Name | Client No | Client Name |

Subqueries

32

+------------+--------------+-----------+---------------+
10000	New CMS	103	Lennart AG
10010	Texi2XML	110	MySQL AB
10020	Studyguides	110	MySQL AB
10030	PDC Server	115	Icoaten & Co.
10040	Intranet	103	Lennart AG
10050	Intranet	101	Seamen's
10060	SMB Server	115	Icoaten & Co.
10070	WLAN	115	Icoaten & Co.
+------------+--------------+-----------+---------------+

Answer 16:

Subquery converted to a LEFT JOIN:

mysql> SELECT
-> p.pid AS `Project ID`,
-> p.name AS `Project Name`,
-> c.id AS `Client No`,
-> c.name AS `Client Name`
-> FROM project AS p
-> LEFT JOIN client AS c
-> USING (id) /* or: ON p.id = c.id */
-> WHERE c.name IS NULL
-> ;

+------------+--------------+-----------+-------------+
| Project ID | Project Name | Client No | Client Name |
+------------+--------------+-----------+-------------+
| 10080 | Intranet | NULL | NULL |
| 10090 | PDC Server | NULL | NULL |
+------------+--------------+-----------+-------------+

Answer 17:

Subquery converted to a RIGHT JOIN:

mysql> SELECT
-> p.pid AS `Project ID`,
-> p.name AS `Project Name`,
-> c.id AS `Client No`,
-> c.name AS `Client Name`
-> FROM client AS c
-> RIGHT JOIN project AS p
-> USING (id) /* or: ON c.id = p.id */
-> WHERE c.name IS NULL
-> ;

+------------+--------------+-----------+-------------+
| Project ID | Project Name | Client No | Client Name |
+------------+--------------+-----------+-------------+
| 10080 | Intranet | NULL | NULL |
| 10090 | PDC Server | NULL | NULL |
+------------+--------------+-----------+-------------+

Answer 18:

This subquery cannot be converted into an inner join because an inner join will find only matching com-
binations, not rows that do not match.

Answer 19:

For each of the missing parameters in the CONCAT() function, we can insert a scalar subquery that re-

Subqueries

33

turns the required data.

First, we consider how to find the name of the country with the highest number of official languages,
and the number of official languages. The following query will give us the maximum number of official
languages, and the country name that goes along with it:

SELECT Name, COUNT(*) AS nlanguages
FROM Country c, CountryLanguage cl
WHERE c.Code = cl.CountryCode
AND cl.IsOfficial = 'T'

GROUP BY Name
ORDER BY nlanguages DESC
LIMIT 1;

However, there are a few problems with this approach that must be resolved. First of all, the preceding
query does not give us a list of the official languages in the country, just the number of them. To find out
what the languages are, we utilize the GROUP_CONCAT() function as part of the SELECT statement:

SELECT Name, COUNT(*) AS nlanguages,
GROUP_CONCAT(Language) as languages

FROM Country c, CountryLanguage cl
WHERE c.Code = cl.CountryCode
AND cl.IsOfficial = 'T'

GROUP BY Name
ORDER BY nlanguages DESC
LIMIT 1;

The second problem with our approach so far is that a scalar subquery may return only a single column.
The query just presented returns three. We can solve this problem by nesting the subquery once again:

SELECT Name
FROM (SELECT Name, COUNT(*) AS nlanguages,

GROUP_CONCAT(Language) as languages
FROM Country c, CountryLanguage cl
WHERE c.Code = cl.CountryCode
AND cl.IsOfficial = 'T'

GROUP BY Name
ORDER BY nlanguages DESC
LIMIT 1
) AS tmp;

For the number of languages and the list of languages, we can utilize the same method, of course repla-
cing Name with nlanguages or languages in the outer SELECT as required.

The last problem we need to resolve is that, in the CountryLanguage table, there are two countries
with the maximum number of official languages: South Africa and Switzerland both have four official
languages.

Choosing an arbitrary one of these as input for our surrounding CONCAT() function will not invalidate
the requirement in the question. The result for the nlanguages column will, in either case, always be
correct. However, there is no guarantee that either Switzerland or South Africa will be the country selec-
ted every time the subquery is evaluated, so we run the risk of presenting the wrong combination of
country name and list of languages. To resolve this, we place an extra condition on the ORDER BY
clause, which (rather arbitrarily) does a secondary sort in default order (ascending) by the country name.
This means that South Africa will appear, rather than Switzerland.

The complete statement thus looks like this:

SELECT

Subqueries

34

CONCAT(
'The country ',
(SELECT Name FROM (
SELECT Name, COUNT(*) AS nlanguages,

GROUP_CONCAT(Language) as languages
FROM Country c, CountryLanguage cl
WHERE c.Code = cl.CountryCode
AND cl.IsOfficial = 'T'

GROUP BY Name
ORDER BY nlanguages DESC, Name
LIMIT 1
) AS tmp
),
' has ',
(SELECT nlanguages FROM (
SELECT Name, COUNT(*) AS nlanguages,

GROUP_CONCAT(Language) as languages
FROM Country c, CountryLanguage cl
WHERE c.Code = cl.CountryCode
AND cl.IsOfficial = 'T'

GROUP BY Name
ORDER BY nlanguages DESC, Name
LIMIT 1
) AS tmp1
),
' official languages: ',
(SELECT languages FROM (
SELECT Name, COUNT(*) AS nlanguages,

GROUP_CONCAT(Language) as languages
FROM Country c, CountryLanguage cl
WHERE c.Code = cl.CountryCode
AND cl.IsOfficial = 'T'

GROUP BY Name
ORDER BY nlanguages DESC, Name
LIMIT 1
) AS tmp2
)
);

The result looks like this:

The country South Africa has 4 official languages:
Afrikaans,English,Xhosa,Zulu

Subqueries

35

Chapter 14. Views
Almost all examples and exercises in this study guide use the world database as the sample data set. The
accompanying CD-ROM contains the data for this database and instructions that describe how to create
and populate the database for use with your own MySQL installation.

Question 1:

A view can be updatable but not insertable. Explain why this is so.

Question 2:

The following view v1 is created based on the City and Country tables of the world database. Is it
updatable, or even insertable?

CREATE VIEW v1 (CityName, CountryName)
AS SELECT City.Name, Country.Name FROM City, Country
WHERE City.CountryCode = Country.Code
AND City.CountryCode = 'DEU';

Question 3:

Create a view based on the Country table that displays total surface area of each continent, and the av-
erage surface of the countries on each continent. Is that view updatable?

Question 4:

Consider the following view:

mysql> CREATE VIEW vSurface
-> (Name, ContinentSurface, CountryAvgSurface)
-> AS SELECT Continent, SUM(SurfaceArea),
-> AVG(SurfaceArea)
-> FROM Country GROUP BY Continent;

That view could also be created as a summary table (either a temporary or a permanent one), like this:

mysql> CREATE TABLE stSurface
-> AS SELECT Continent AS Name,
-> SUM(SurfaceArea) AS ContinentSurface,
-> AVG(SurfaceArea) AS CountryAvgSurface
-> FROM Country GROUP BY Continent;

What is the advantage of using a summary table over using a view, and what is the disadvantage?

Question 5:

What happens if you try to specify MERGE with a view for which MERGE cannot be used?

Question 6:

With CREATE OR REPLACE VIEW, which of the following objects are replaced if they have the
same name as the new view?

36

a. View

b. Table

c. Trigger

d. Stored routine

Question 7:

Which of the following methods for providing explicit names for the columns in a view work?

a. Include a column list

b. Provide column aliases in the view SELECT statement

c. Rename the columns when you select from the view

Question 8:

Which of these conditions make a view non-updatable?

a. Use of ALGORITHM=TEMPTABLE in the view definition

b. Use of ALGORITHM=MERGE in the view definition

c. Use of aggregate functions in the view definition

d. Use of GROUP BY or HAVING clauses in the view definition

e. Use of expressions like col = col + 1 in the view definition

Question 9:

Is WITH CHECK OPTION allowed only for updatable views, only for non-updatable views, or both?

Question 10:

Why are ALGORITHM = TEMPTABLE and WITH CHECK OPTION mutually exclusive?

Answers to Exercises

Answer 1:

An updatable view is not insertable if any view columns consist of expressions such as col+1 rather
than simple table column references, or if any columns present in the base table and not named in the
view or the INSERT statement have no default value.

Answer 2:

View v1 is updatable as long as only one of its base tables is modified in an UPDATE statement. This is
why the first two UPDATE statements succeed while the third one fails:

mysql> UPDATE v1 SET CityName = 'Werbelina'

Views

37

-> WHERE CityName = 'Berlin';
Rows matched: 239 Changed: 1 Warnings: 0
mysql> SELECT Name FROM City

-> WHERE Name = 'Werbelina' OR Name = 'Berlin';
+-----------+
| Name |
+-----------+
| Werbelina |
+-----------+
mysql> UPDATE v1 SET CountryName = 'Deutschland'

-> WHERE CountryName = 'Germany';
Rows matched: 1 Changed: 1 Warnings: 0
mysql> SELECT Name FROM Country

-> WHERE Name = 'Deutschland' OR Name = 'Germany';
+-------------+
| Name |
+-------------+
| Deutschland |
+-------------+
mysql> UPDATE v1 SET CityName = 'Berlin',

-> CountryName = 'Germany'
-> WHERE CityName = 'Werbelina'
-> AND CountryName = 'Deutschland';

ERROR 1393 (HY000): Can not modify more than one base table
through a join view 'world.v1'

For the same reason that the last UPDATE statement failed, the view is insertable only if a single table is
affected:

mysql> SELECT Name FROM City WHERE Name = 'Neustadt';
+----------+
| Name |
+----------+
| Neustadt |
+----------+
mysql> INSERT INTO v1 SET CityName = 'Neustadt',

-> CountryName = 'Deutschland';
ERROR 1393 (HY000): Can not modify more than one base table
through a join view 'world.v1'

Answer 3:

This view shows the total surface area of each continent, and the average surface area of the countries on
each continent. The view is not updatable because it uses aggregate functions and GROUP BY.

mysql> CREATE VIEW vSurface
-> (Name, ContinentSurface, CountryAvgSurface)
-> AS SELECT Continent, SUM(SurfaceArea), AVG(SurfaceArea)
-> FROM Country GROUP BY Continent;

mysql> SELECT * FROM vSurface;
+---------------+------------------+-------------------+
| Name | ContinentSurface | CountryAvgSurface |
+---------------+------------------+-------------------+
Asia	31881005.00	625117.745098
Europe	23049133.90	501068.128261
North America	24214470.00	654445.135135
Africa	30250377.00	521558.224138
Oceania	8564294.00	305867.642857
Antarctica	13132101.00	2626420.200000
South America	17864926.00	1276066.142857
+---------------+------------------+-------------------+

Views

38

Answer 4:

The advantage of using a summary table over using a view is that a summary table is often faster. The
reason for this is that its result set is created only once (on table creation time), whereas the view's result
set has to be calculated each time the view is selected. The disadvantage of a summary table is that its
content is static and might become stale (the base table or tables might have been changed after creation
of the summary table), whereas a view always provides the most recent data.

Answer 5:

MySQL issues a warning and resets the algorithm to UNDEFINED:

mysql> CREATE ALGORITHM=MERGE VIEW vSurfaceMERGE
-> (Name, ContinentSurface, CountryAvgSurface)
-> AS SELECT Continent,
-> SUM(SurfaceArea), AVG(SurfaceArea)
-> FROM Country GROUP BY Continent;

Query OK, 0 rows affected, 1 warning (0.01 sec)

mysql> SHOW WARNINGS\G
*************************** 1. row ***************************
Level: Warning
Code: 1354

Message: View merge algorithm can't be used here for now
(assumed undefined algorithm)

1 row in set (0.03 sec)

mysql> SHOW CREATE VIEW vSurfaceMERGE\G
*************************** 1. row ***************************

View: vSurfaceMERGE
Create View: CREATE ALGORITHM=UNDEFINED VIEW `world`.`vSurfaceMERGE`
AS select `world`.`Country`.`Continent` AS `Name`,
sum(`world`.`Country`.`SurfaceArea`) AS `ContinentSurface`,
avg(`world`.`Country`.`SurfaceArea`) AS `CountryAvgSurface`
from `world`.`Country` group by `world`.`Country`.`Continent`

Answer 6:

Only a view with the same name would be replaced.

Answer 7:

a. Works: Include a column list

b. Works: Provide column aliases in the view SELECT statement

c. Does not work: Rename the columns when you select from the view

Answer 8:

The following conditions make a view updatable or not:

a. Use of ALGORITHM=TEMPTABLE in the view definition: This makes a view non-updatable be-
cause updates would affect the temporary table rather than the base table.

b. Use of ALGORITHM=MERGE in the view definition: This does not affect the updatability of a view.

Views

39

c. Use of aggregate functions in the view definition: These functions makes a view non-updatable.

d. Use of GROUP BY or HAVING clauses in the view definition: These clauses make a view non-
updatable.

e. Use of expressions such as col = col + 1 in the view definition: Use of expressions does not
necessarily make a view non-updatable. The updatability depends on which columns are named.
The following example demonstrates this:

mysql> CREATE VIEW vCountryPopCalc
-> AS SELECT Name, Population * 1.05 AS PopNew
-> FROM Country;

mysql> UPDATE vCountryPopCalc SET PopNew = 1000000000
-> WHERE Name = 'United States';

ERROR 1348 (HY000): Column 'PopNew' is not updatable
mysql> UPDATE vCountryPopCalc SET Name = 'Vereinigte Staaten'

-> WHERE Name = 'United States';
Rows matched: 1 Changed: 1 Warnings: 0
mysql> SELECT Name FROM Country

-> WHERE Name = 'United States'
-> OR Name = 'Vereinigte Staaten';

+--------------------+
| Name |
+--------------------+
| Vereinigte Staaten |
+--------------------+

Answer 9:

WITH CHECK OPTION is allowed for updatable views only.

Answer 10:

Because TEMPTABLE makes a view non-updatable, while WITH CHECK OPTION requires the view to
be updatable.

Views

40

Chapter 15. Importing and Exporting
Data

Almost all examples and exercises in this study guide use the world database as the sample data set. The
accompanying CD-ROM contains the data for this database and instructions that describe how to create
and populate the database for use with your own MySQL installation.

Question 1:

Assume that you have a text file containing tab-separated data that you want to load into a table named
loadtest that has the following structure:

mysql> DESCRIBE loadtest;
+---------+---------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+---------+---------+------+-----+---------+-------+
number1	int(11)	YES		NULL	
char1	char(1)	YES		NULL	
date1	date	YES		NULL	
+---------+---------+------+-----+---------+-------+

One line of the file looks like this, where whitespace between values represents tab characters:

NULL NULL NULL

If you use LOAD DATA INFILE to load the file, what values will be created in the table from the values
in this line? What values should the line contain if you actually want a row of NULL values to be created
in the table?

Question 2:

Trying to load data into a table you get this error:

mysql> LOAD DATA LOCAL INFILE
-> 'C:\Dokumente und Einstellungen\All Users\data for t.txt'
-> INTO TABLE t;

ERROR 2 (HY000): File 'C:Dokumente und EinstellungenAll Usersdata for t.txt'
not found (Errcode: 2)

What would the correct statement look like?

Question 3:

Consider the structure of the Country table:

mysql> SHOW CREATE TABLE Country\G
*************************** 1. row ***************************

Table: Country
Create Table: CREATE TABLE `Country` (
`Code` char(3) NOT NULL default '',
`Name` char(52) NOT NULL default '',
`Continent` enum('Asia','Europe','North America','Africa','Oceania',
'Antarctica','South America') NOT NULL default 'Asia',

41

`Region` char(26) NOT NULL default '',
`SurfaceArea` float(10,2) NOT NULL default '0.00',
`IndepYear` smallint(6) default NULL,
`Population` int(11) NOT NULL default '0',
`LifeExpectancy` float(3,1) default NULL,
`GNP` float(10,2) default NULL,
`GNPOld` float(10,2) default NULL,
`LocalName` char(45) NOT NULL default '',
`GovernmentForm` char(45) NOT NULL default '',
`HeadOfState` char(60) default NULL,
`Capital` int(11) default NULL,
`Code2` char(2) NOT NULL default '',
PRIMARY KEY (`Code`)

) ENGINE=MyISAM DEFAULT CHARSET=latin1

Assume that you want to populate that table with additional data that are stored in a file
more_countries.dat. That file contains country codes and country names only.

a. What statement would you use to load the contents of that file into the Country table?

b. Considering that some columns are declared NOT NULL, will the statement succeed when it only
loads the Code and Name columns?

Question 4:

Assume that you want to load data into a table that are in a file that is located on the server host. What
privileges are necessary so that this succeeds?

Question 5:

Is there a MySQL client program that could be used for data import instead of the LOAD DATA IN-
FILE statement? If so, what is it called?

Question 6:

The simplest form of the LOAD DATA INFILE statement looks like this:

LOAD DATA INFILE 'file_name' INTO TABLE table_name;

MySQL assumes a number of defaults for options that are omitted from the statement. What will
MySQL use as the default separators for fields and lines?

Question 7:

The simplest form of the LOAD DATA INFILE statement looks like this:

LOAD DATA INFILE 'file_name' INTO TABLE table_name;

MySQL assumes a number of defaults for options that are omitted from the statement. What will
MySQL use as the default behavior when there are lines in file_name that would duplicate unique-
valued key entries? Does it make a difference if file_name is located on the client host rather than on
the server host?

Question 8:

After loading data into a table, you see the following result from the LOAD DATA INFILE statement.
What does it mean?

Importing and Exporting Data

42

Query OK, 18 rows affected (0.00 sec)
Records: 9 Deleted: 9 Skipped: 0 Warnings: 2

Question 9:

After loading data into a table, you see the following result from the LOAD DATA INFILE statement.
What does it mean?

Query OK, 0 rows affected (0.00 sec)
Records: 9 Deleted: 0 Skipped: 9 Warnings: 2

Question 10:

Which client programs can be used to populate the table buildings with information stored in the
data file /tmp/buildings.txt? Assume that the contents of the file are in the default format expec-
ted by the program.

Question 11:

Assume that you've issued the following command to back up all table data in the project database:

shell> mysqldump --no-create-info --tab=/tmp
--lines-terminated-by="\r\n" project

Could you use a similar command to back up all table data for multiple databases?

Question 12:

Assume that you've issued the following command to back up the data contained in the test database's
tbl1 and tbl2 tables:

shell> mysqldump --tab=/backup --fields-terminated-by=,
--lines-terminated-by="\r\n" test tbl1 tbl2

Can you use a similar, single, command to back up the data for any tbl1 and tbl2 tables in all data-
bases on the server? If so, how?

Question 13:

Consider you want to load data from a file even_more_countries.dat into the Country table.
The contents of that file look like this, where whitespace between values represents tab characters:

Unusable Data Code Name PopCity PopRural
Unusable_data UDM Udmurtia 235050 1430580
Unusable_data BAV Bavaria 3150025 2590245

You want to skip the column that contains unusable data, and you want to combine the values of the
PopCity and PopRural columns into a single value that should go to the Population column of
the table. Also, the first line of the file should be skipped. What's the correct statement to accomplish
this?

Question 14:

The simplest form of the LOAD DATA INFILE statement looks like this:

LOAD DATA INFILE 'file_name' INTO TABLE table_name;

Importing and Exporting Data

43

MySQL assumes a number of defaults for options that are omitted from the statement. Assuming that
the filename has a single component, what will MySQL use as the default location for file_name?

Question 15:

The simplest form of the LOAD DATA INFILE statement looks like this:

LOAD DATA INFILE 'file_name' INTO TABLE table_name;

MySQL assumes a number of defaults for options that are omitted from the statement. What will
MySQL use as the default table columns to load?

Question 16:

The simplest form of the LOAD DATA INFILE statement looks like this:

LOAD DATA INFILE 'file_name' INTO TABLE table_name;

MySQL assumes a number of defaults for options that are omitted from the statement. What will
MySQL use as the default number of lines of file_name to skip?

Question 17:

Consider the following table data:

mysql> SELECT * FROM personnel;
+-----+------+-------+
| pid | unit | grade |
+-----+------+-------+
46	23	42
47	23	53
48	23	123
49	23	142
50	23	198
60	23	248
70	23	255
80	42	110
90	42	255
+-----+------+-------+

Assume that you want to export the pid and unit columns for the five highest grades to a file that has
Windows-like line terminators (\r\n) and that looks like this:

"70";"23"
"90";"42"
"60";"23"
"50";"23"
"49";"23"

What statement would you issue?

Answers to Exercises

Answer 1:

The actual result of the LOAD DATA statement will look like this:

Importing and Exporting Data

44

mysql> SELECT * FROM loadtest;
+---------+-------+------------+
| number1 | char1 | date1 |
+---------+-------+------------+
| 0 | N | 0000-00-00 |
+---------+-------+------------+

The import file values are interpreted as the string 'NULL', not as NULL values. For non-string
columns, these strings are converted first before they are inserted. This conversion results in values of 0
for integers and '0000-00-00' for dates. For the string column, the import string is clipped to the
length of the column, resulting in a value of 'N'. If you wanted to actually insert NULL values, the im-
port file would have to contain the \N sequence that LOAD DATA INFILE interprets as representing
NULL.

Answer 2:

In the correct statement, you would either use forward slashes or double backslashes in the path. You
cannot use single backslashes because these are the escape character in MySQL. You don't need to treat
space characters in the path in any special way.

mysql> LOAD DATA LOCAL INFILE
-> 'C:\\Dokumente und Einstellungen\\All Users\\data for t.txt'
-> INTO TABLE t;

Answer 3:

a. To load two columns of the table, use this statement:

mysql> LOAD DATA LOCAL INFILE 'more_countries.dat'
-> INTO TABLE Country (Code, Name);

Query OK, 2 rows affected (0.01 sec)
Records: 2 Deleted: 0 Skipped: 0 Warnings: 0

That statement assumes that the file more_countries.dat is located in the directory where
mysql was invoked, and it further assumes that the file contains two new countries.

b. As just shown, the statement succeeds although it doesn't populate some of the columns that are de-
clared NOT NULL. Those columns, however, all have default values (as can be seen in the SHOW
CREATE TABLE statement).

Answer 4:

The server must have read access to that file, and you need the FILE privilege.

Answer 5:

Instead of using the SQL statement LOAD DATA INFILE, you could use the MySQL client program
named mysqlimport. It takes arguments that correspond to various clauses of the LOAD DATA IN-
FILE statement.

Answer 6:

The default separator for fields is the tab character (\t). The default separator for lines is the newline
character (\n).

Importing and Exporting Data

45

Answer 7:

If the data file is located on the server host, the default behavior in case of duplicate unique-valued key
entries is to return an error. MySQL does not insert the duplicating line and skips the rest of the lines. If
the data file is located on the client host, the default behavior changes. In this case, the default is to skip
lines that would duplicate records; that is, MySQL operates as if the keyword IGNORE had been spe-
cified.

Answer 8:

The message provides four pieces of information.

• Nine lines were read from the data file (Records: 9).

• The keyword REPLACE was used in the LOAD DATA INFILE statement (because the Deleted
value is non-zero).

• Each one of the nine lines in the data file duplicates an existing unique-valued key entry. Thus, each
line causes a row to be deleted and replaces it (Deleted: 9, and 18 rows affected).

• The warnings indicate that two problems were found in the import file (Warnings: 2).

Answer 9:

The message provides four pieces of information.

• Nine lines were read from the data file (Records: 9).

• The keyword IGNORE was used in the LOAD DATA INFILE statement (because the Skipped
value is non-zero).

• Each one of the nine lines in the data file duplicates an existing unique-valued key entry. Thus, each
line was skipped and not inserted (Skipped: 9, and 0 rows affected).

• The warnings indicate that two problems were found in the import file (Warnings: 2).

Answer 10:

To populate the table from data stored in a text file, use mysqlimport. You must specify the database
name. The table name is determined implicitly from the final component of the filename (excluding any
filename extension):

shell> mysqlimport landmarks /tmp/buildings.txt

The same can be accomplished from with the mysql client program using the LOAD DATA INFILE
statement. Here, you must specify the table name explicitly:

mysql> LOAD DATA INFILE '/tmp/buildings.txt' INTO landmarks.buildings;

Answer 11:

No, this is not possible. The --tab option can be used to dump only a single database. To back up mul-
tiple databases using this method, it's necessary to issue multiple mysqldump commands.

Importing and Exporting Data

46

Answer 12:

mysqldump can back up multiple databases (or even all databases), but not when invoked with the -
-tab option. This option causes the output files for all tables to be written into a single directory. That
would make it impossible to tell which database each table came from.

Answer 13:

You need to skip the first column of the even_more_countries.dat file, add the values of Pop-
City and PopRural and populate the Population columns of the table with the combined values,
and you have to skip the first line:

mysql> LOAD DATA LOCAL INFILE 'even_more_countries.dat'
-> INTO TABLE Country
-> IGNORE 1 LINES
-> (@unused, Code, Name, @PopCity, @PopRural)
-> SET Population = @PopCity + @PopRural;

Query OK, 2 rows affected (0.02 sec)
Records: 2 Deleted: 0 Skipped: 0 Warnings: 0

mysql> SELECT Code, Name, Population FROM Country
-> WHERE Code = 'UDM' OR Code = 'BAV';

+------+----------+------------+
| Code | Name | Population |
+------+----------+------------+
| BAV | Bavaria | 5740270 |
| UDM | Udmurtia | 1665630 |
+------+----------+------------+
2 rows in set (0.00 sec)

That statement assumes that the file even_more_countries.dat is located in the directory where
mysql was invoked.

Answer 14:

The default location of file_name is the directory of the default database.

Answer 15:

All table columns are loaded by default. This means that file_name should specify a value for every
table column. If lines don't contain values for all columns, each missing column is set to its default
value.

Answer 16:

No lines of file_name are skipped by default.

Answer 17:

mysql> SELECT pid, unit
-> INTO OUTFILE 'highpers.dat'
-> FIELDS TERMINATED BY ';'
-> ENCLOSED BY '"'
-> LINES TERMINATED BY '\r\n'
-> FROM personnel
-> ORDER BY grade DESC
-> LIMIT 5
-> ;

Importing and Exporting Data

47

Chapter 16. User Variables
Almost all examples and exercises in this study guide use the world database as the sample data set. The
accompanying CD-ROM contains the data for this database and instructions that describe how to create
and populate the database for use with your own MySQL installation.

Question 1:

Which of the following assignments will succeed?

1. SET @a1 = 'test1'

2. SET @a2 := 'test2'

3. SET @a3 == 'test3'

4. SELECT @a4 = 'test4'

5. SELECT @a5 := 'test5'

Question 2:

What result does the following statement yield?

SELECT IFNULL(@a, '@a is NULL');

Question 3:

1. Assume that you've issued the following statements. What's the result of the SELECT statement?

mysql> SET @a = 1;
mysql> SET @A = @a;
mysql> SELECT @a, @A;

2. Assume that you're continuing the session by issuing these statements. What will the result of the
SELECT statement be?

mysql> SET @a = 2;
mysql> SELECT @a, @A;

Question 4:

How can you store user variables so they're not lost when the session ends? How can you make them
available for other threads?

Answers to Exercises

Answer 1:

In a SET statement, you may use either the = or the := operator to assign a value to a user variable, so
the first two assignments succeed. Trying to assign a value with == results in a syntax error. In a SE-
LECT statement, you have to use the := operator for assigning a value to a variable; if you use the = op-

48

erator, the expression acts as a comparison rather than an assignment. In the fourth statement, the com-
parison is not true unless @a4 happens to have the value 'test4'.

Answer 2:

Assuming the user variable hasn't been assigned a value in a previous statement, you will get this result:

mysql> SELECT IFNULL(@a, '@a is NULL');
+--------------------------+
| IFNULL(@a, '@a is NULL') |
+--------------------------+
| @a is NULL |
+--------------------------+

Answer 3:

User variable names are not case sensitive, so you will get the following results:

1.
mysql> SELECT @a, @A;
+------+------+
| @a | @A |
+------+------+
| 1 | 1 |
+------+------+

2.
mysql> SELECT @a, @A;
+------+------+
| @a | @A |
+------+------+
| 2 | 2 |
+------+------+

Answer 4:

Neither is possible. When the session ends, all its user variables are lost, and user variables are specific
to the client connection.

User Variables

49

Chapter 17. Prepared Statements
Almost all examples and exercises in this study guide use the world database as the sample data set. The
accompanying CD-ROM contains the data for this database and instructions that describe how to create
and populate the database for use with your own MySQL installation.

Question 1:

What are the main reasons why using prepared statements is often more efficient than using ‘regular’
statements?

Question 2:

After you execute the following statements, how many prepared statements exist?

PREPARE s1 FROM 'SELECT 1';
PREPARE s2 FROM 'SELECT 2';
PREPARE s1 FROM 'SELECT (1+2';

Question 3:

John connects to the server and prepares a statement:

mysql> PREPARE s1 FROM 'SELECT Name, Population
'> FROM Country WHERE Continent = ?';

Query OK, 0 rows affected (0.00 sec)
Statement prepared

Then Lydia connects to the same server and prepares a statement with the same name:

mysql> PREPARE s1 FROM 'SELECT NOW()';
Query OK, 0 rows affected (0.10 sec)
Statement prepared

What effect does this have on John's prepared statement?

Question 4:

Write a prepared statement that accepts a continent name and a population value as parameters, and uses
the parameter values to select, from the Country table, the countries located in the given continent that
have a population larger than the given population.

Use that prepared statement to determine which countries in Asia have a population of more than 100
million.

Question 5:

John connects to the server and prepares a statement:

mysql> PREPARE s1 FROM 'SELECT Name, Population
'> FROM Country WHERE Continent = ?';

Query OK, 0 rows affected (0.00 sec)
Statement prepared

50

Then John disconnects, reconnects, and issues the following statements. What is the result of the EX-
ECUTE statement?

mysql> SET @c = 'South America';
mysql> EXECUTE s1 USING @c;

Question 6:

How do you deallocate a prepared statement? Is it necessary to do so?

Question 7:

Which kinds of statements can you prepare?

a. All SQL statements

b. SELECT statements

c. INSERT, UPDATE, REPLACE, and DELETE statements

d. SET and DO statements

e. Many SHOW statements

f. CREATE TABLE statements

Question 8:

Does a prepared statement have to include the ‘?’ parameter marker?

Answers to Exercises

Answer 1:

Prepared statements can be more efficient if the same statement is run several times because there is less
network traffic and less time is spent parsing the same statement multiple times.

Answer 2:

One prepared statement exists. After the first two PREPARE statements, two prepared statements exist
(s1 and s2). The third statement causes the original s1 to be discarded because it uses the same state-
ment name. However, it does not result in a new prepared statement because the statement contains a
syntax error. Only s2 exists after all three PREPARE statements have been executed.

Answer 3:

There is no effect. Prepared statements are specific to the session in which they are created. Statements
prepared by one client do not affect those prepared by other clients.

Answer 4:

The statement would be prepared like this:

mysql> PREPARE spop FROM 'SELECT Name, Population
'> FROM Country

Prepared Statements

51

'> WHERE Continent = ? AND Population > ?';
Query OK, 0 rows affected (0.00 sec)
Statement prepared

It would be executed like this:

mysql> SET @c = 'Asia', @p = 100000000;
Query OK, 0 rows affected (0.00 sec)

mysql> EXECUTE spop USING @c, @p;
+------------+------------+
| Name | Population |
+------------+------------+
Bangladesh	129155000
Indonesia	212107000
India	1013662000
Japan	126714000
China	1277558000
Pakistan	156483000
+------------+------------+
6 rows in set (0.00 sec)

Answer 5:

An error occurs for the EXECUTE statement because prepared statement s1 does not exist. Statements
prepared during a session are discarded when the session ends and are not available to later sessions.

Answer 6:

To deallocate a prepared statement, use DEALLOCATE PREPARE:

DEALLOCATE PREPARE my_stmt;

DROP PREPARE can also be used.

It is not necessary to deallocate a prepared statement created within a given session because the server
discards the statement automatically when the session ends. However, deallocating the statement expli-
citly does allow the server to release resources earlier that are associated with the statement.

Answer 7:

You cannot prepare all SQL statements, but the rest of the list in the question contains the preparable
statements.

Answer 8:

No. It will usually make sense to use that parameter marker, but otherwise prepared statements work
without them, too:

mysql> PREPARE my_time FROM 'SELECT NOW()';
Query OK, 0 rows affected (0.02 sec)
Statement prepared

mysql> EXECUTE my_time;
+---------------------+
| NOW() |
+---------------------+

Prepared Statements

52

| 2005-05-19 23:35:30 |
+---------------------+

Prepared Statements

53

Chapter 18. Stored Procedures and
Functions

Almost all examples and exercises in this study guide use the world database as the sample data set. The
accompanying CD-ROM contains the data for this database and instructions that describe how to create
and populate the database for use with your own MySQL installation.

Question 1:

Name some benefits of using stored routines.

Question 2:

Assume that you look at a stored routine that does not return a value and is invoked using a CALL state-
ment. Is that routine a stored procedure or a stored function?

Question 3:

Assume that test is your default database. How can you create a world_record_count() pro-
cedure in the world database without changing the default database to world beforehand?

Question 4:

Assume that you want a stored procedure to run with the privileges of the person who calls it. How do
you accomplish this?

Question 5:

Which of the following statements are true for the execution of stored routines?

1. The routine's environment is set so that the database that it belongs to becomes its default database
for the duration of its execution.

2. The sql_mode system variable value in effect when the routine executes is the value that was cur-
rent when it was defined.

3. The privileges of the routine are set to the privileges of its definer.

Question 6:

Which of the following block definitions are correct?

1.
BEGIN my_block:
(compound statements)
END my_block;

2.
my_block: BEGIN
(compound statements)
END my_block;

54

3.
myblock:
BEGIN my_block;
(compound statements)
END my_block;

Question 7:

Are these statements legal if both appear in the same block?

DECLARE i INT;
DECLARE i INT;

Question 8:

Are these statements legal if both appear in the same block?

DECLARE c CHAR(10);
DECLARE c CONDITION FOR SQLSTATE '02000';

Question 9:

Does MySQL support use of cursors for updating tables?

Question 10:

If you want to catch the occurrence of a condition so that you can ignore it, how do you declare the
handler?

Question 11:

Which of the FOR, LOOP, REPEAT, and WHILE loop constructs does MySQL support?

Question 12:

If the body of a loop must execute at least once, which is more appropriate, REPEAT or WHILE?

Question 13:

If the body of a loop need not necessarily execute even once, which is more appropriate, REPEAT or
WHILE?

Question 14:

Suppose that an EXIT handler is declared in an outer block and the condition handled by the handler oc-
curs within an inner block. Does control transfer to end the of the outer block or the inner block?

Question 15:

How can you retrieve the name and definition of the world_record_count() procedure in the
world database?

Question 16:

Which properties of a stored routine can you change with the ALTER PROCEDURE and ALTER
FUNCTION statements?

Stored Procedures and Functions

55

• The SQL SECURITY characteristic

• The name of the routine

• The routine definition

• The COMMENT characteristic

• All characteristics of the routine

Question 17:

The following two procedures are defined and then loop_test() is executed:

mysql> delimiter //
mysql> CREATE PROCEDURE incrementor (OUT i INT)

-> BEGIN
-> REPEAT
-> SET i = i + 1;
-> UNTIL i > 9
-> END REPEAT;
-> END;
-> //

Query OK, 0 rows affected (0.00 sec)

mysql> CREATE PROCEDURE loop_test ()
-> BEGIN
-> DECLARE value INT default 0;
-> CALL incrementor(value);
-> SELECT value; /* What value is shown here? */
-> END;
-> //

Query OK, 0 rows affected (0.00 sec)

mysql> delimiter ;

mysql> CALL loop_test();

What is the result of the SELECT value statement?

a. 9

b. 10

c. NULL

d. The code enters an infinite loop and never reaches SELECT value.

e. loop_test() fails to call incrementor() because the declaration of this procedure failed; a
space was needed in the UNTIL condition (i > 9).

Answers to Exercises

Answer 1:

• Because you can use compound statements and flow-control constructs, stored routines are more

Stored Procedures and Functions

56

flexible regarding SQL syntax than “regular” SQL statements.

• Unlike “regular” SQL statements, a stored routine may use error handlers for exceptional conditions,
thus error handling is more flexible.

• A collection of stored routines acts as a library of solutions to problems; it facilitates sharing of
knowledge and experience.

• Stored routines may reduce the complexity of application code, making that code easier to read and
maintain.

• Stored routines may make applications more consistent regarding how they perform particular opera-
tions.

• Stored routines reduce the need to maintain the same or similar code in multiple applications.

Answer 2:

It's a stored procedure. Functions always return a value, and they're invoked within an expression, rather
than in a CALL statement.

Answer 3:

To do this, you need to qualify the procedure with the database name:

CREATE PROCEDURE world.world_record_count ...

Answer 4:

While creating the stored procedure, you'll have to use this characteristic in the definition:

SQL SECURITY INVOKER

If that characteristic is missing, the default is to run with the privileges of the person who defined the
procedure.

Answer 5:

The first two statements are true. The third one is true only if the routine was defined either with the de-
fault value for the SQL SECURITY characteristic, or explicitly with the value of DEFINER.

Answer 6:

Only the second block definition is correct. The first block has the beginning label inside of the block.
The third block has an extra label inside of the block.

Answer 7:

No. Variables in a block must have different names.

Answer 8:

Yes. Items of different types can have the same name. However, this might make the routine more diffi-
cult to understand.

Answer 9:

Stored Procedures and Functions

57

No. MySQL supports the use of cursors only for reading tables, not for updating them.

Answer 10:

The handler should be a CONTINUE handler and its statement should be an empty block.

Answer 11:

MySQL supports all of the mentioned loop constructs with the exception of FOR.

Answer 12:

REPEAT is more appropriate, although it is possible to use WHILE.

Answer 13:

WHILE is more appropriate.

Answer 14:

Control transfers to the end of the block in which the handler is declared. In this case, that is the outer
block.

Answer 15:

There are two ways to accomplish this:

1. By querying the INFORMATION_SCHEMA database:

mysql> SELECT ROUTINE_NAME, ROUTINE_DEFINITION
-> FROM INFORMATION_SCHEMA.ROUTINES
-> WHERE ROUTINE_SCHEMA = 'world'
-> AND ROUTINE_NAME = 'world_record_count'
-> \G

*************************** 1. row ***************************
ROUTINE_NAME: world_record_count

ROUTINE_DEFINITION: BEGIN
SELECT 'Country', COUNT(*) FROM Country;
SELECT 'City', COUNT(*) FROM City;
SELECT 'CountryLanguage', COUNT(*) FROM CountryLanguage;

END

2. By using the SHOW CREATE PROCEDURE statement:

mysql> SHOW CREATE PROCEDURE world.world_record_count\G
*************************** 1. row ***************************

Procedure: world_record_count
sql_mode:

Create Procedure: CREATE PROCEDURE `world`.`world_record_count`()
BEGIN
SELECT 'Country', COUNT(*) FROM Country;
SELECT 'City', COUNT(*) FROM City;
SELECT 'CountryLanguage', COUNT(*) FROM CountryLanguage;

END

You cannot use SHOW PROCEDURE STATUS because it doesn't return the definition:

mysql> SHOW PROCEDURE STATUS LIKE 'world_record_count'\G

Stored Procedures and Functions

58

*************************** 1. row ***************************
Db: world

Name: world_record_count
Type: PROCEDURE

Definer: wuser@localhost
Modified: 2005-06-02 02:12:13
Created: 2005-06-02 02:12:13

Security_type: DEFINER
Comment:

Answer 16:

You can change only the SQL SECURITY and COMMENT characteristics.

Answer 17:

The parameter to incrementor() should have been defined as INOUT. Instead, OUT sets i to NULL
and the code enters an infinite loop because the UNTIL condition never becomes true.

Stored Procedures and Functions

59

Chapter 19. Triggers
Almost all examples and exercises in this study guide use the world database as the sample data set. The
accompanying CD-ROM contains the data for this database and instructions that describe how to create
and populate the database for use with your own MySQL installation.

Question 1:

What is the maximum number of triggers you can have per table?

Question 2:

Assume that you have 239 rows in the Country table, and you're just about to insert ten new rows us-
ing a multiple-row INSERT statement. There is a BEFORE INSERT trigger associated with that table.
How often will it be activated?

Question 3:

Whenever data are modified in the Country table, you want a trigger to perform multiple operations
before data actually get updated. How can you achieve that given that you cannot have more than one
BEFORE UPDATE trigger per table?

Question 4:

Can you have a trigger named abcde that is a BEFORE UPDATE trigger for the City table, and an-
other trigger also named abcde that is a AFTER INSERT trigger for the Country table, in the same
database?

Question 5:

For which kind of triggers can you use the OLD prefix for column names, and for which can you use
NEW? What restrictions are imposed on the use of OLD and NEW, respectively?

Answers to Exercises

Answer 1:

You can have a maximum of six triggers per table: Two INSERT, two UPDATE, and two DELETE trig-
gers, where each type of statement has a BEFORE and an AFTER trigger. You cannot have more than
one trigger of the same kind; for example, you cannot have more than one BEFORE INSERT trigger.

Answer 2:

The BEFORE INSERT trigger will be activated ten times, once for each row that is being inserted.

Answer 3:

You would use a compound statement; that is, a set of statements in the trigger body that is located in a
block that starts with BEGIN and ends with END.

Answer 4:

No. Trigger names must be unique within a database.

Answer 5:

You can use OLD for DELETE and UPDATE triggers, and NEW for INSERT and UPDATE triggers. OLD
must be used in a read-only fashion, whereas NEW can be used for reading or for changing data.

60

Chapter 20. Obtaining Database
Metadata

Almost all examples and exercises in this study guide use the world database as the sample data set. The
accompanying CD-ROM contains the data for this database and instructions that describe how to create
and populate the database for use with your own MySQL installation.

Question 1:

Using mysqlshow, what command would you issue to find out which tables in the test database
have names starting with my?

Question 2:

Using mysqlshow, how can you see the indexes of a table named mytable in the test database?
Can you retrieve information about the indexes of multiple tables issuing a single command?

Question 3:

Which client programs can be used display the structure of a table named buildings, including any
indexes it might have?

Question 4:

Consider the SHOW DATABASES LIKE 'w%' SQL statement. What is the equivalent mysqlshow
command to display the same information? What is the equivalent SELECT statement that uses the IN-
FORMATION_SCHEMA database?

Question 5:

Consider the SHOW TABLES FROM world SQL statement. What is the equivalent mysqlshow
command to display the same information? What is the equivalent SELECT statement that uses the IN-
FORMATION_SCHEMA database?

Question 6:

Consider the SHOW TABLES FROM world LIKE 'C%' SQL statement. What is the equivalent
mysqlshow command to display the same information? What is the equivalent SELECT statement that
uses the INFORMATION_SCHEMA database?

Question 7:

Consider the SHOW COLUMNS FROM City FROM world SQL statement. What is the equivalent
mysqlshow command to display the same information? What is the equivalent SELECT statement that
uses the INFORMATION_SCHEMA database?

Question 8:

Consider the SHOW KEYS FROM City FROM world SQL statement. What is the equivalent
mysqlshow command to display the same information? What is the equivalent SELECT statement that
uses the INFORMATION_SCHEMA database?

Question 9:

What SQL statement provides information about the available character sets and their associated default
collations?

61

Question 10:

What SQL statement lists which character set/collation combinations can be used?

Question 11:

What SELECT statement provides information about the tables available in the INFORMA-
TION_SCHEMA database?

Answers to Exercises

Answer 1:

To list the tables in the test database starting with my, you would issue a mysqlshow test
"my%" or mysqlshow test "my*" command.

Answer 2:

The --keys or -k option instructs mysqlshow to display table index information in addition to
column information. For the mytable table in the test database, use mysqlshow --keys test
mytable. You can show the indexes for only one table per command.

Answer 3:

You can display the structure of the table and its indexes using the mysqlshow command:

shell> mysqlshow --keys landmarks buildings

The same can be accomplished from within the mysql client by using the DESCRIBE (or SHOW
COLUMNS) and SHOW INDEX statements:

mysql> DESCRIBE landmarks.buildings;
mysql> SHOW INDEX FROM landmarks.buildings;

Answer 4:

You could use mysqlshow "w*" to accomplish the same task. Using the INFORMATION_SCHEMA
database, you could issue this statement:

SELECT SCHEMA_NAME FROM INFORMATION_SCHEMA.SCHEMATA
WHERE SCHEMA_NAME LIKE 'w%';

Answer 5:

You could use mysqlshow world to accomplish the same task. Using the INFORMATION_SCHEMA
database, you could issue this statement:

SELECT TABLE_NAME FROM INFORMATION_SCHEMA.TABLES
WHERE TABLE_SCHEMA = 'world';

Answer 6:

You could use mysqlshow world "C*" to accomplish the same task. Using the INFORMA-
TION_SCHEMA database, you could issue this statement:

SELECT TABLE_NAME FROM INFORMATION_SCHEMA.TABLES
WHERE TABLE_SCHEMA = 'world' AND TABLE_NAME LIKE 'C%';

Obtaining Database Metadata

62

Answer 7:

You could use mysqlshow world City to accomplish the same task. Here is a comparison
between the SHOW COLUMNS statement and the SELECT statement using the INFORMA-
TION_SCHEMA database:

mysql> SHOW COLUMNS FROM City FROM world\G
*************************** 1. row ***************************
Field: ID
Type: int(11)
Null: NO
Key: PRI

Default: NULL
Extra: auto_increment

*************************** 2. row ***************************
Field: Name
Type: char(35)
Null: NO
Key:

Default:
Extra:

*************************** 3. row ***************************
Field: CountryCode
Type: char(3)
Null: NO
Key:

Default:
Extra:

*************************** 4. row ***************************
Field: District
Type: char(20)
Null: NO
Key:

Default:
Extra:

*************************** 5. row ***************************
Field: Population
Type: int(11)
Null: NO
Key:

Default: 0
Extra:

mysql> SELECT COLUMN_NAME, DATA_TYPE, IS_NULLABLE,
-> COLUMN_KEY, COLUMN_DEFAULT, EXTRA
-> FROM INFORMATION_SCHEMA.COLUMNS
-> WHERE TABLE_SCHEMA = 'world' AND TABLE_NAME = 'City'\G

*************************** 1. row ***************************
COLUMN_NAME: ID
DATA_TYPE: int

IS_NULLABLE: NO
COLUMN_KEY: PRI

COLUMN_DEFAULT: NULL
EXTRA: auto_increment

*************************** 2. row ***************************
COLUMN_NAME: Name
DATA_TYPE: char

IS_NULLABLE: NO
COLUMN_KEY:

COLUMN_DEFAULT:
EXTRA:

Obtaining Database Metadata

63

*************************** 3. row ***************************
COLUMN_NAME: CountryCode
DATA_TYPE: char

IS_NULLABLE: NO
COLUMN_KEY:

COLUMN_DEFAULT:
EXTRA:

*************************** 4. row ***************************
COLUMN_NAME: District
DATA_TYPE: char

IS_NULLABLE: NO
COLUMN_KEY:

COLUMN_DEFAULT:
EXTRA:

*************************** 5. row ***************************
COLUMN_NAME: Population
DATA_TYPE: int

IS_NULLABLE: NO
COLUMN_KEY:

COLUMN_DEFAULT: 0
EXTRA:

Answer 8:

You could use mysqlshow --keys world City to accomplish the same task. (This command
will display the table columns, too, so it's not exactly equivalent to SHOW KEYS FROM City FROM
world. There's no way to display only the table's indexes using mysqlshow.)

There is no SELECT statement using the INFORMATION_SCHEMA database that would show exactly
the same information as the SHOW KEYS statement. Here is what those two statements yield:

mysql> SHOW KEYS FROM City FROM world\G
*************************** 1. row ***************************

Table: City
Non_unique: 0
Key_name: PRIMARY

Seq_in_index: 1
Column_name: ID
Collation: A

Cardinality: 0
Sub_part: NULL
Packed: NULL
Null:

Index_type: BTREE
Comment:

mysql> SELECT * FROM INFORMATION_SCHEMA.KEY_COLUMN_USAGE
-> WHERE TABLE_SCHEMA = 'world' AND TABLE_NAME = 'City'\G

*************************** 1. row ***************************
CONSTRAINT_CATALOG: NULL
CONSTRAINT_SCHEMA: world
CONSTRAINT_NAME: PRIMARY
TABLE_CATALOG: NULL
TABLE_SCHEMA: world
TABLE_NAME: City
COLUMN_NAME: ID

ORDINAL_POSITION: 1
POSITION_IN_UNIQUE_CONSTRAINT: NULL

REFERENCED_TABLE_SCHEMA: NULL
REFERENCED_TABLE_NAME: NULL
REFERENCED_COLUMN_NAME: NULL

Obtaining Database Metadata

64

Answer 9:

SELECT * FROM INFORMATION_SCHEMA.CHARACTER_SETS;

Answer 10:

SELECT * FROM INFORMATION_SCHEMA.COLLATION_CHARACTER_SET_APPLICABILITY;

Answer 11:

SELECT TABLE_NAME FROM INFORMATION_SCHEMA.TABLES
WHERE TABLE_SCHEMA = 'INFORMATION_SCHEMA';

Obtaining Database Metadata

65

Chapter 21. Debugging MySQL
Applications

Almost all examples and exercises in this study guide use the world database as the sample data set. The
accompanying CD-ROM contains the data for this database and instructions that describe how to create
and populate the database for use with your own MySQL installation.

Question 1:

How could you find out what an error number labeled errno means (such as 13 in the following error
message)? What kind of error is that?

Can't find file: './mysql/host.frm' (errno: 13)

Question 2:

MySQL has three levels of errors. What are they? What's the SQL statement to display messages at all
three levels?

Question 3:

Which of the following statements are true?

a. SHOW ERRORS displays information about MySQL errors, MySQL warnings, and operating sys-
tem-related errors.

b. SHOW WARNINGS displays warnings and notes, but not errors.

c. SHOW ERRORS lists all errors that have occurred since the client session was started.

d. The perror program gives the same kind of information as the SHOW NOTES SQL statement.

e. SHOW COUNT(*) WARNINGS shows how many errors, warnings, and notes have occurred for
the previous SQL statement that could cause errors, warnings, or notes.

Question 4:

Which of the following statements is true?

a. SHOW WARNINGS displays information about errors, warnings, and notes that have occurred since
the last time SHOW WARNINGS was issued

b. The output of SHOW WARNINGS can be limited to particular errors, warnings, and notes, like this:

SHOW WARNINGS LIMIT 0, 1;

c. The output of SHOW WARNINGS can be limited to particular errors, warnings, and notes, like this:

SHOW WARNINGS LIKE '1264';

d. The generation of errors and warnings can be suppressed by issuing this SQL statement:

66

SET sql_errors = false, sql_warnings = false;

e. The generation of notes can be suppressed by issuing this SQL statement:

SET sql_notes = 0;

Question 5:

Why is there a SHOW ERRORS statement if SHOW WARNINGS displays errors, too?

Answers to Exercises

Answer 1:

You could use the perror utility to find an error message for an error number, like this:

c:\mysql\bin>perror 13
Error code 13: Permission denied

This is an operating system error.

Answer 2:

The MySQL error levels are:

• Error

• Warning

• Note

Messages at all three levels can be displayed with SHOW WARNINGS.

Answer 3:

a. False. SHOW ERRORS displays information about MySQL errors and MySQL warnings, but not
about operating system-related errors.

b. False. SHOW WARNINGS displays warnings and notes, as well as errors.

c. False. SHOW ERRORS lists all errors that have occurred for the previous SQL statement that could
cause errors.

d. False. The perror program gives information about operating system-related errors. There is no
SHOW NOTES SQL statement.

e. True. SHOW COUNT(*) WARNINGS shows how many errors, warnings, and notes have occurred
for the previous SQL statement that could cause errors, warnings, or notes.

Answer 4:

Debugging MySQL Applications

67

a. False. SHOW WARNINGS displays information about errors, warnings, and notes that have oc-
curred for the previous SQL statement that could cause errors, warnings, or notes.

b. True. The output of SHOW WARNINGS can be limited to particular errors, warnings, and notes, like
this:

SHOW WARNINGS LIMIT 0, 1;

In the preceding example, only the first error, warning, or note would be displayed.

c. False. The output of SHOW WARNINGS cannot be limited to particular errors, warnings, and notes.

d. False. The generation of errors and warnings cannot be suppressed.

e. True. The generation of notes can be suppressed by issuing this SQL statement:

SET sql_notes = 0;

Answer 5:

SHOW ERRORS tends to produce less output than SHOW WARNINGS and thus makes it easier to focus
on serious problems.

Debugging MySQL Applications

68

Chapter 22. Basic Optimizations
Almost all examples and exercises in this study guide use the world database as the sample data set. The
accompanying CD-ROM contains the data for this database and instructions that describe how to create
and populate the database for use with your own MySQL installation.

Question 1:

Consider the following table with two indexes:

mysql> DESCRIBE fastindex;
+-------+----------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------+----------+------+-----+---------+-------+
| i1 | char(10) | NO | MUL | | |
| i2 | char(10) | YES | MUL | NULL | |
+-------+----------+------+-----+---------+-------+

With no other facts given, which of the following queries would you expect to run faster?

SELECT i1 FROM fastindex WHERE i1 LIKE 'mid%';

SELECT i2 FROM fastindex WHERE i2 LIKE 'mid%';

Question 2:

Consider the following table with indexes:

mysql> SHOW CREATE TABLE fastindex\G
*************************** 1. row ***************************

Table: fastindex
Create Table: CREATE TABLE `fastindex` (
`i1` char(10) NOT NULL default '',
`i2` char(10) NOT NULL default '',
KEY `i1` (`i1`(3)),
KEY `i2` (`i2`)

) ENGINE=MyISAM DEFAULT CHARSET=latin1

With no other facts given, which of the following queries would you expect to run faster?

SELECT i1 FROM fastindex WHERE i1 LIKE 'mid%';

SELECT i2 FROM fastindex WHERE i2 LIKE 'mid%';

Question 3:

Under what circumstances can adding indexes to a table make table operations slower?

Question 4:

Indexing improves performance of SELECT queries only; it deteriorates performance of queries that
change data. Is this true?

Question 5:

69

“For my purposes, it doesn't matter whether a query returns a result within one second or one minute, so
I don't care about indexing.” Do you object to anything about that statement?

Question 6:

What are the main reasons to not index table columns?

Question 7:

Here's an excerpt of the Country table definition:

mysql> DESCRIBE Country\G
...
*************************** 3. row ***************************
Field: Continent
Type: enum('Asia','Europe','North America','Africa','Oceania',

'Antarctica','South America')
Null: NO
Key:

Default: Asia
Extra:

*************************** 4. row ***************************
...

If the Continent column had a PRIMARY key on it, how many rows could it have? Would the situ-
ation be different if it had a UNIQUE key on it?

Question 8:

Why is index processing better with short index values, rather than with long values?

Question 9:

What do you have to consider when making index values as short as possible?

Question 10:

What's the statement for creating a five character-long index on the Name column of the City table?

Question 11:

What are the main reasons why the use of the LIMIT clause can help improve the performance of quer-
ies?

Question 12:

What could you do to speed up data insertion operations?

Question 13:

Consider the following table:

mysql> DESCRIBE enumtest;
+-------+--------------------------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------+--------------------------------+------+-----+---------+-------+
| col | enum('first','second','third') | NO | PRI | first | |
+-------+--------------------------------+------+-----+---------+-------+
mysql> SELECT * FROM enumtest;

Basic Optimizations

70

Empty set

Will the following statement fail or will it insert rows? What will the contents of the enumtest table
be after executing the statement?

mysql> INSERT INTO enumtest VALUES
-> ('first'),('second'),('third'),('false'),('fourth');

Answers to Exercises

Answer 1:

A column or index that can contain NULL values cannot be processed as fast as one that cannot contain
NULL. i1 and i2 are identical except that i1 cannot contain NULL values, so i1 should be faster to
process. Therefore, this query should be faster:

SELECT i1 FROM fastindex WHERE i1 LIKE 'mid%';

Answer 2:

SELECT i1 FROM fastindex WHERE i1 LIKE 'mid%';

would probably perform faster because i1 is indexed with only the first three characters as subpart of
that index. MySQL can look up that index faster because it contains only up to 3-character rows, as
compared to the second index that could contain up to 10-character rows.

Answer 3:

Insert, delete, and update operations will become slower when the table has indexes, because those oper-
ations require the indexes to be updated, too.

Answer 4:

Indexing cannot only help speed up SELECT queries, but it can also improve UPDATE and DELETE
statements. This is because indexing can help the server find the rows more quickly that should be up-
dated or deleted. On the other hand, indexes will slow down UPDATE and DELETE statements because
not only the original data have to be updated but also the indexes.

Answer 5:

Even if the speed of your own queries doesn't matter, indexes that help queries run faster reduce the time
tables are locked and reduce the use of machine resources. This improves performance of queries for
other clients.

Answer 6:

If you never refer to a column in comparisons (WHERE, ORDER BY, GROUP BY) there's no need to in-
dex that column. Furthermore, if a column contains only few distinct values, an index will likely not
speed up queries.

Answer 7:

If the ENUM column Continent had a PRIMARY key on it, it could only contain 8 rows (the seven
distinct continent names plus the empty string element that is inserted when an error occurs). The
column is declared NOT NULL, so the situation isn't any different when a UNIQUE key is used. (If it
wasn't, then the column could contain an arbitrary number of rows that would mostly be NULL values.)

Basic Optimizations

71

Answer 8:

When short index values are retrieved, less information has to be read. Furthermore, they take less time
to compare than long values, and more short index values fit into the key cache than do long values.

Answer 9:

The prefix values of an index should have about the same amount of uniqueness as the original values.

Answer 10:

You can use either of the following statements to create the index:

mysql> CREATE INDEX Name ON City(Name(5));
mysql> ALTER TABLE City ADD INDEX(Name(5));

Answer 11:

When using LIMIT, the server needs to return less information to the client. Another reason why LIM-
IT may speed up queries is that some row sorts terminate faster when combined with that clause.

Answer 12:

You could use multiple-row inserts, rather than single-row inserts. LOAD DATA INFILE will run even
faster than any INSERT statement that inserts the same amount of rows. For InnoDB tables, you could
group inserts within a transaction so that InnoDB will flush changes only when the transaction ends,
rather than after every single INSERT statement. If you're planning to replace rows using DELETE and
INSERT, you could as well use the MySQL extension REPLACE that runs faster.

Answer 13:

Table enumtest has a primary key on its only column col. Therefore, there can be only unique val-
ues in that column. Because of the ENUM data type, this means that there can be only four different val-
ues in the column (the three enumeration members and the empty string that is used for invalid values).
false is an invalid value, so it is converted to '' (the empty string). The last value (fourth) is not in
the ENUM list, either, so it too is converted to the error value ''. The primary key, however, prevents
that same value from being stored again, which leads to a duplicate-key error:

mysql> INSERT INTO enumtest VALUES
-> ('first'),('second'),('third'),('false'),('fourth');

ERROR 1062 (23000): Duplicate entry '' for key 1

The result of this statement depends on the storage engine. For a multiple-row INSERT statement into a
MyISAM table, rows are inserted as long as no error occurs. If a row fails, that row and any following
rows are not inserted. As a result, the table contents are:

mysql> SELECT * FROM enumtest;
+--------+
| col |
+--------+
| |
| first |
| second |
| third |
+--------+
4 rows in set

For an InnoDB table, the statement rolls back, leaving the table empty.

Basic Optimizations

72

	Part 2. MySQL Developer II Exam
	Chapter 12. Joins
	Chapter 13. Subqueries
	Chapter 14. Views
	Chapter 15. Importing and Exporting Data
	Chapter 16. User Variables
	Chapter 17. Prepared Statements
	Chapter 18. Stored Procedures and Functions
	Chapter 19. Triggers
	Chapter 20. Obtaining Database Metadata
	Chapter 21. Debugging MySQL Applications
	Chapter 22. Basic Optimizations

